-
-
Notifications
You must be signed in to change notification settings - Fork 10.5k
Closed
Labels
bugSomething isn't workingSomething isn't working
Description
Your current environment
The output of `python collect_env.py`
python -u collect_env.py
Collecting environment information...
Traceback (most recent call last):
File "/lfs/skampere1/0/rschaef/KoyejoLab-Pretraining-Inference-Compute-Exchange-Rate/collect_env.py", line 765, in <module>
main()
File "/lfs/skampere1/0/rschaef/KoyejoLab-Pretraining-Inference-Compute-Exchange-Rate/collect_env.py", line 744, in main
output = get_pretty_env_info()
^^^^^^^^^^^^^^^^^^^^^
File "/lfs/skampere1/0/rschaef/KoyejoLab-Pretraining-Inference-Compute-Exchange-Rate/collect_env.py", line 739, in get_pretty_env_info
return pretty_str(get_env_info())
^^^^^^^^^^^^^^
File "/lfs/skampere1/0/rschaef/KoyejoLab-Pretraining-Inference-Compute-Exchange-Rate/collect_env.py", line 568, in get_env_info
vllm_version = get_vllm_version()
^^^^^^^^^^^^^^^^^^
File "/lfs/skampere1/0/rschaef/KoyejoLab-Pretraining-Inference-Compute-Exchange-Rate/collect_env.py", line 273, in get_vllm_version
from vllm import __version__, __version_tuple__
ImportError: cannot import name '__version_tuple__' from 'vllm' (/lfs/skampere1/0/rschaef/miniconda3/envs/llmonk/lib/python3.11/site-packages/vllm/__init__.py)
Model Input Dumps
No response
🐛 Describe the bug
vLLM throws an error when attempting to use Cerebras's models. Here is a minimal reproduction:
from vllm import LLM, SamplingParams
from vllm.distributed.parallel_state import destroy_model_parallel
model = LLM(model="cerebras/Cerebras-GPT-1.3B", dtype="bfloat16")
model_sampling_params = SamplingParams(
n=1,
temperature=1.0,
max_tokens=64,
seed=0,
)
output = model.generate(
prompts=["Please continue the following sentence: The quick brown fox jumps "],
sampling_params=model_sampling_params,
)
The error is: TypeError: 'NoneType' object is not iterable
It arises here:
def _verify_embedding_mode(self) -> None:
architectures = getattr(self.hf_config, "architectures", [])
self.embedding_mode = any(
ModelRegistry.is_embedding_model(arch) for arch in architectures)
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working