Skip to content

[Bug]: vLLM throws error when sampling from Cerebras GPT Models #11224

@RylanSchaeffer

Description

@RylanSchaeffer

Your current environment

The output of `python collect_env.py`
python -u collect_env.py 
Collecting environment information...
Traceback (most recent call last):
  File "/lfs/skampere1/0/rschaef/KoyejoLab-Pretraining-Inference-Compute-Exchange-Rate/collect_env.py", line 765, in <module>
    main()
  File "/lfs/skampere1/0/rschaef/KoyejoLab-Pretraining-Inference-Compute-Exchange-Rate/collect_env.py", line 744, in main
    output = get_pretty_env_info()
             ^^^^^^^^^^^^^^^^^^^^^
  File "/lfs/skampere1/0/rschaef/KoyejoLab-Pretraining-Inference-Compute-Exchange-Rate/collect_env.py", line 739, in get_pretty_env_info
    return pretty_str(get_env_info())
                      ^^^^^^^^^^^^^^
  File "/lfs/skampere1/0/rschaef/KoyejoLab-Pretraining-Inference-Compute-Exchange-Rate/collect_env.py", line 568, in get_env_info
    vllm_version = get_vllm_version()
                   ^^^^^^^^^^^^^^^^^^
  File "/lfs/skampere1/0/rschaef/KoyejoLab-Pretraining-Inference-Compute-Exchange-Rate/collect_env.py", line 273, in get_vllm_version
    from vllm import __version__, __version_tuple__
ImportError: cannot import name '__version_tuple__' from 'vllm' (/lfs/skampere1/0/rschaef/miniconda3/envs/llmonk/lib/python3.11/site-packages/vllm/__init__.py)

Model Input Dumps

No response

🐛 Describe the bug

vLLM throws an error when attempting to use Cerebras's models. Here is a minimal reproduction:

from vllm import LLM, SamplingParams
from vllm.distributed.parallel_state import destroy_model_parallel


model = LLM(model="cerebras/Cerebras-GPT-1.3B", dtype="bfloat16")

model_sampling_params = SamplingParams(
    n=1,
    temperature=1.0,
    max_tokens=64,
    seed=0,
)

output = model.generate(
    prompts=["Please continue the following sentence: The quick brown fox jumps "],
    sampling_params=model_sampling_params,
)

The error is: TypeError: 'NoneType' object is not iterable

It arises here:

    def _verify_embedding_mode(self) -> None:
        architectures = getattr(self.hf_config, "architectures", [])
        self.embedding_mode = any(
            ModelRegistry.is_embedding_model(arch) for arch in architectures)

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions