-
-
Notifications
You must be signed in to change notification settings - Fork 10.5k
Closed
Labels
bugSomething isn't workingSomething isn't working
Description
Your current environment
The output of `python collect_env.py`
Your output of `python collect_env.py` here
Model Input Dumps
No response
🐛 Describe the bug
self.output_dim should be changed to self.output_size
class ColumnParallelLinearWithLoRA(BaseLinearLayerWithLoRA):
"""
LoRA on top of ColumnParallelLinear layer.
LoRA B is sliced for tensor parallelism.
There are two types for the `base_layer`:
1. ColumnParallelLinear, e.g.`dense_h_to_4h` in `FalconForCausalLM`.
2. MergedColumnParallelLinear, e.g.`gate_up_proj` in `Phi3ForCausalLM`.
"""
def __init__(self, base_layer: ColumnParallelLinear) -> None:
super().__init__(base_layer)
# The base_layer type is ColumnParallelLinear or
# MergedColumnParallelLinear, their weight sharding logic is
# inconsistent when TP is greater than 1.
self.is_merged_col_linear = type(
base_layer) is MergedColumnParallelLinear
self.tp_size = get_tensor_model_parallel_world_size()
self.output_size = self.base_layer.output_size_per_partition
# There is only one LoRA layer
self.n_slices = 1
def slice_lora_b(self, lora_b: torch.Tensor) -> torch.Tensor:
# Applicable to cases where the base_layer is
# MergedColumnParallelLinear.
if self.is_merged_col_linear:
tp_rank = get_tensor_model_parallel_rank()
shard_size = self.output_size // 2
offset = lora_b.shape[-1] // 2
left_weight = lora_b[:, tp_rank * shard_size:(tp_rank + 1) *
shard_size]
right_weight = lora_b[:, offset + tp_rank * shard_size:offset +
(tp_rank + 1) * shard_size]
lora_b = torch.cat([left_weight, right_weight], dim=1)
# Applicable to cases where the base_layer is
# ColumnParallelLinear.
else:
tensor_model_parallel_rank = get_tensor_model_parallel_rank()
shard_size = self.output_dim # self.output_dim is not defined
start_idx = tensor_model_parallel_rank * shard_size
end_idx = (tensor_model_parallel_rank + 1) * shard_size
lora_b = lora_b[:, start_idx:end_idx]
return lora_b
def slice_bias(self, bias: torch.Tensor) -> torch.Tensor:
# TODO: Fix the slicing logic of bias.
if bias is None:
return bias
tensor_model_parallel_rank = get_tensor_model_parallel_rank()
shard_size = self.output_dim # self.output_dim is not defined
start_idx = tensor_model_parallel_rank * shard_size
end_idx = (tensor_model_parallel_rank + 1) * shard_size
bias = bias[start_idx:end_idx]
return bias
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working