-
-
Notifications
You must be signed in to change notification settings - Fork 10.5k
Closed
Labels
bugSomething isn't workingSomething isn't working
Description
Your current environment
The output of `python collect_env.py`
Collecting environment information...
PyTorch version: 2.5.1+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.3 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: 14.0.0-1ubuntu1.1
CMake version: version 3.31.2
Libc version: glibc-2.35
Python version: 3.10.12 (main, Nov 6 2024, 20:22:13) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-6.6.56+-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.2.140
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA L4
GPU 1: NVIDIA L4
GPU 2: NVIDIA L4
GPU 3: NVIDIA L4
Nvidia driver version: 560.35.03
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.6
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 48
On-line CPU(s) list: 0-47
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R) CPU @ 2.20GHz
CPU family: 6
Model: 85
Thread(s) per core: 2
Core(s) per socket: 24
Socket(s): 1
Stepping: 7
BogoMIPS: 4400.46
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 768 KiB (24 instances)
L1i cache: 768 KiB (24 instances)
L2 cache: 24 MiB (24 instances)
L3 cache: 38.5 MiB (1 instance)
NUMA node(s): 1
NUMA node0 CPU(s): 0-47
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Mitigation; Enhanced IBRS
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Versions of relevant libraries:
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.6.4.1
[pip3] nvidia-cuda-cupti-cu12==12.6.80
[pip3] nvidia-cuda-nvcc-cu12==12.6.85
[pip3] nvidia-cuda-runtime-cu12==12.6.77
[pip3] nvidia-cudnn-cu12==9.6.0.74
[pip3] nvidia-cufft-cu12==11.3.0.4
[pip3] nvidia-curand-cu12==10.3.7.77
[pip3] nvidia-cusolver-cu12==11.7.1.2
[pip3] nvidia-cusparse-cu12==12.5.4.2
[pip3] nvidia-ml-py==12.570.86
[pip3] nvidia-nccl-cu12==2.23.4
[pip3] nvidia-nvcomp-cu12==4.1.0.6
[pip3] nvidia-nvjitlink-cu12==12.6.85
[pip3] onnx==1.17.0
[pip3] optree==0.13.1
[pip3] pynvml==11.4.1
[pip3] pytorch-ignite==0.5.1
[pip3] pytorch-lightning==2.5.0.post0
[pip3] pyzmq==24.0.1
[pip3] sentence-transformers==3.3.1
[pip3] torch==2.5.1+cu121
[pip3] torchaudio==2.5.1+cu121
[pip3] torchinfo==1.8.0
[pip3] torchmetrics==1.6.1
[pip3] torchsummary==1.5.1
[pip3] torchtune==0.5.0
[pip3] torchvision==0.20.1+cu121
[pip3] transformers==4.48.2
[pip3] triton==3.1.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.7.1
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X PHB PHB PHB 0-45 0 N/A
GPU1 PHB X PHB PHB 0-45 0 N/A
GPU2 PHB PHB X PHB 0-45 0 N/A
GPU3 PHB PHB PHB X 0-45 0 N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NVIDIA_VISIBLE_DEVICES=all
CUDA_MINOR_VERSION=2
NVIDIA_REQUIRE_CUDA=cuda>=12.2 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526
NCCL_VERSION=2.19.3-1
NVIDIA_DRIVER_CAPABILITIES=compute,utility
NVIDIA_PRODUCT_NAME=CUDA
CUDA_VERSION=12.2.2
LD_LIBRARY_PATH=/usr/local/lib/python3.10/dist-packages/cv2/../../lib64:/usr/local/nvidia/lib:/usr/local/nvidia/lib64
MKL_THREADING_LAYER=GNU
CUDA_MAJOR_VERSION=12
CUDA_HOME=/usr/local/cuda
CUDA_HOME=/usr/local/cuda
CUDA_VISIBLE_DEVICES=0,1,2,3
CUDA_VISIBLE_DEVICES=0,1,2,3
NCCL_CUMEM_ENABLE=0
TORCHINDUCTOR_COMPILE_THREADS=1
TORCH_NCCL_AVOID_RECORD_STREAMS=1
CUDA_MODULE_LOADING=LAZY
VLLM_USE_V1=1
🐛 Describe the bug
when open v1 has error .no open v1 no error
os.environ["VLLM_USE_V1"] = "1"
MODEL_PATH = "/kaggle/input/qwen2.5/transformers/0.5b-instruct-awq/1"
# MODEL_PATH = snapshot_download('PRIME-RL/Eurus-2-7B-PRIME')
from vllm import LLM, SamplingParams
prompts = ["The future of AI is"]
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
llm = LLM(
model=MODEL_PATH,
tensor_parallel_size=1,
gpu_memory_utilization=0.99,
# speculative_model=SPECULATIVE_MODEL_PATH,
# num_speculative_tokens=5,
use_v2_block_manager=True,
)
outputs = llm.generate(prompts, sampling_params)
for output in outputs:
print(f"Prompt: {output.prompt!r}, Generated text: {output.outputs[0].text!r}")
TypeError Traceback (most recent call last)
<ipython-input-15-981e7e49d0da> in <cell line: 18>()
16 sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
17
---> 18 llm = LLM(
19 model=MODEL_PATH,
20 tensor_parallel_size=1,
/usr/local/lib/python3.10/dist-packages/vllm/utils.py in inner(*args, **kwargs)
1037 )
1038
-> 1039 return fn(*args, **kwargs)
1040
1041 return inner # type: ignore
/usr/local/lib/python3.10/dist-packages/vllm/entrypoints/llm.py in __init__(self, model, tokenizer, tokenizer_mode, skip_tokenizer_init, trust_remote_code, allowed_local_media_path, tensor_parallel_size, dtype, quantization, revision, tokenizer_revision, seed, gpu_memory_utilization, swap_space, cpu_offload_gb, enforce_eager, max_seq_len_to_capture, disable_custom_all_reduce, disable_async_output_proc, hf_overrides, mm_processor_kwargs, task, override_pooler_config, compilation_config, **kwargs)
238 # to avoid import order issues
239 self.engine_class = self.get_engine_class()
--> 240 self.llm_engine = self.engine_class.from_engine_args(
241 engine_args, usage_context=UsageContext.LLM_CLASS)
242
/usr/local/lib/python3.10/dist-packages/vllm/v1/engine/llm_engine.py in from_engine_args(cls, engine_args, usage_context, stat_loggers, enable_multiprocessing)
84
85 # Create the engine configs.
---> 86 vllm_config = engine_args.create_engine_config(usage_context)
87 executor_class = Executor.get_class(vllm_config)
88
/usr/local/lib/python3.10/dist-packages/vllm/engine/arg_utils.py in create_engine_config(self, usage_context)
1030 ) -> VllmConfig:
1031 if envs.VLLM_USE_V1:
-> 1032 self._override_v1_engine_args(usage_context)
1033
1034 # gguf file needs a specific model loader and doesn't use hf_repo
/usr/local/lib/python3.10/dist-packages/vllm/engine/arg_utils.py in _override_v1_engine_args(self, usage_context)
1291 from vllm.platforms import current_platform
1292 device_name = current_platform.get_device_name().lower()
-> 1293 if "h100" in device_name or "h200" in device_name:
1294 # For H100 and H200, we use larger default values.
1295 default_max_num_batched_tokens = {
TypeError: a bytes-like object is required, not 'str'
And
from vllm.platforms import current_platform
device_name = current_platform.get_device_name()
print(device_name)
will get
b'NVIDIA L4'
How can I fix it?
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working