-
-
Notifications
You must be signed in to change notification settings - Fork 10.6k
Closed as not planned
Labels
bugSomething isn't workingSomething isn't working
Description
Your current environment
The output of `python collect_env.py`
Collecting environment information...
PyTorch version: 2.5.1+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.5 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.22.1
Libc version: glibc-2.35
Python version: 3.10.12 (main, Feb 4 2025, 14:57:36) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-5.15.0-125-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA H200
GPU 1: NVIDIA H200
GPU 2: NVIDIA H200
GPU 3: NVIDIA H200
GPU 4: NVIDIA H200
GPU 5: NVIDIA H200
GPU 6: NVIDIA H200
GPU 7: NVIDIA H200
Nvidia driver version: 565.57.01
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 57 bits virtual
Byte Order: Little Endian
CPU(s): 176
On-line CPU(s) list: 0-175
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R) Platinum 8468V
CPU family: 6
Model: 143
Thread(s) per core: 2
Core(s) per socket: 44
Socket(s): 2
Stepping: 8
BogoMIPS: 4800.00
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq vmx ssse3 fma cx16 pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves avx_vnni avx512_bf16 wbnoinvd arat avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b fsrm md_clear serialize tsxldtrk avx512_fp16 arch_capabilities
Virtualization: VT-x
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 4.1 MiB (88 instances)
L1i cache: 2.8 MiB (88 instances)
L2 cache: 176 MiB (88 instances)
L3 cache: 195 MiB (2 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-87
NUMA node1 CPU(s): 88-175
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Mitigation; TSX disabled
Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pyzmq==26.3.0
[pip3] torch==2.5.1
[pip3] torchaudio==2.5.1
[pip3] torchvision==0.20.1
[pip3] transformers==4.49.0
[pip3] triton==3.1.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.7.3
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
�[4mGPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 NIC0 NIC1 NIC2 NIC3 NIC4 NIC5 NIC6 NIC7 NIC8 CPU Affinity NUMA Affinity GPU NUMA ID�[0m
GPU0 X NV18 NV18 NV18 NV18 NV18 NV18 NV18 NODE PHB PHB PHB PHB SYS SYS SYS SYS 0-87 0 N/A
GPU1 NV18 X NV18 NV18 NV18 NV18 NV18 NV18 NODE PHB PHB PHB PHB SYS SYS SYS SYS 0-87 0 N/A
GPU2 NV18 NV18 X NV18 NV18 NV18 NV18 NV18 NODE PHB PHB PHB PHB SYS SYS SYS SYS 0-87 0 N/A
GPU3 NV18 NV18 NV18 X NV18 NV18 NV18 NV18 NODE PHB PHB PHB PHB SYS SYS SYS SYS 0-87 0 N/A
GPU4 NV18 NV18 NV18 NV18 X NV18 NV18 NV18 SYS SYS SYS SYS SYS PHB PHB PHB PHB 88-175 1 N/A
GPU5 NV18 NV18 NV18 NV18 NV18 X NV18 NV18 SYS SYS SYS SYS SYS PHB PHB PHB PHB 88-175 1 N/A
GPU6 NV18 NV18 NV18 NV18 NV18 NV18 X NV18 SYS SYS SYS SYS SYS PHB PHB PHB PHB 88-175 1 N/A
GPU7 NV18 NV18 NV18 NV18 NV18 NV18 NV18 X SYS SYS SYS SYS SYS PHB PHB PHB PHB 88-175 1 N/A
NIC0 NODE NODE NODE NODE SYS SYS SYS SYS X NODE NODE NODE NODE SYS SYS SYS SYS
NIC1 PHB PHB PHB PHB SYS SYS SYS SYS NODE X PHB PHB PHB SYS SYS SYS SYS
NIC2 PHB PHB PHB PHB SYS SYS SYS SYS NODE PHB X PHB PHB SYS SYS SYS SYS
NIC3 PHB PHB PHB PHB SYS SYS SYS SYS NODE PHB PHB X PHB SYS SYS SYS SYS
NIC4 PHB PHB PHB PHB SYS SYS SYS SYS NODE PHB PHB PHB X SYS SYS SYS SYS
NIC5 SYS SYS SYS SYS PHB PHB PHB PHB SYS SYS SYS SYS SYS X PHB PHB PHB
NIC6 SYS SYS SYS SYS PHB PHB PHB PHB SYS SYS SYS SYS SYS PHB X PHB PHB
NIC7 SYS SYS SYS SYS PHB PHB PHB PHB SYS SYS SYS SYS SYS PHB PHB X PHB
NIC8 SYS SYS SYS SYS PHB PHB PHB PHB SYS SYS SYS SYS SYS PHB PHB PHB X
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
NIC0: mlx5_0
NIC1: mlx5_1
NIC2: mlx5_2
NIC3: mlx5_3
NIC4: mlx5_4
NIC5: mlx5_5
NIC6: mlx5_6
NIC7: mlx5_7
NIC8: mlx5_8
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
LD_LIBRARY_PATH=<snip>:/opt/hpcx/nccl_rdma_sharp_plugin/lib:/opt/hpcx/ucc/lib/ucc:/opt/hpcx/ucc/lib:/opt/hpcx/ucx/lib/ucx:/opt/hpcx/ucx/lib:/opt/hpcx/sharp/lib:/opt/hpcx/hcoll/lib:/opt/hpcx/ompi/lib:
NCCL_CUMEM_ENABLE=0
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY
🐛 Describe the bug
500 error when passing an image with one side < 28 to Qwen. I don't quite understand why. Qwen does like 28 though, since its window size is 14 and adjacent windows get merged (hence 28).
Took me a minute to repro this.
import base64
import torch
import numpy as np
from PIL import Image
import io
import numpy as np
from openai import OpenAI
from PIL import Image
import numpy as np
import torch
bbox_schema = {
"$schema": "http://json-schema.org/draft-07/schema#",
"type": "object",
"properties": {
"boxes": {
"type": "array",
"items": {
"type": "object",
"properties": {
"bbox_2d": {
"type": "array",
"items": {"type": "number"},
"description": "2D bounding box coordinates in the format [x1, y1, x2, y2].",
},
"label": {
"type": "string",
"description": "Label for the annotated object.",
},
},
"required": ["bbox_2d", "label"],
},
},
},
"required": ["boxes"],
}
def text(text):
return {"type": "text", "text": text}
def image(image):
if isinstance(image, torch.Tensor):
image = image.numpy()
if isinstance(image, np.ndarray):
if image.shape[0] == 3:
image = image.transpose(1, 2, 0)
image = Image.fromarray(image)
buffer = io.BytesIO()
image.save(buffer, format="png")
image_base64 = base64.b64encode(buffer.getvalue()).decode("utf-8")
return {
"type": "image_url",
"image_url": {
"url": f"data:image/png;base64,{image_base64}",
},
}
def user(*content):
return {"role": "user", "content": content}
oai_client = None
openai_api_base = "http://<snip>:8080/v1"
openai_api_key = "EMPTY"
def request(turns, guidance=None, temperature=0.0, max_tokens=1024):
global oai_client
if oai_client is None:
oai_client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
if not isinstance(turns, list):
turns = [turns]
result = oai_client.chat.completions.create(
model="Qwen/Qwen2.5-VL-72B-Instruct",
temperature=temperature,
max_tokens=max_tokens,
messages=turns,
extra_body=guidance,
n=1,
)
return {"role": "assistant", "content": result.choices[0].message.content}
if __name__ == "__main__":
futures = []
frame_image = Image.fromarray(255 * np.ones((26, 28, 3), dtype=np.uint8))
box_request = user(
image(frame_image),
text(
"This is a reproduction of a bug for VLLM. Your efforts are wasted. Please do not try. "
),
)
request([box_request])
I just get a 500 error in the server logs. Nothing else.
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working