-
-
Notifications
You must be signed in to change notification settings - Fork 10.4k
Open
Labels
bugSomething isn't workingSomething isn't working
Description
Your current environment
The output of `uv run python collect_env.py`
INFO 04-25 09:13:46 [__init__.py:239] Automatically detected platform cuda.
Collecting environment information...
uv is set
PyTorch version: 2.6.0+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.5 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.22.1
Libc version: glibc-2.35
Python version: 3.12.8 | packaged by conda-forge | (main, Dec 5 2024, 14:24:40) [GCC 13.3.0] (64-bit runtime)
Python platform: Linux-6.8.0-1018-aws-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA H200
GPU 1: NVIDIA H200
GPU 2: NVIDIA H200
GPU 3: NVIDIA H200
GPU 4: NVIDIA H200
GPU 5: NVIDIA H200
GPU 6: NVIDIA H200
GPU 7: NVIDIA H200
Nvidia driver version: 550.127.05
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 192
On-line CPU(s) list: 0-191
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R) Platinum 8488C
CPU family: 6
Model: 143
Thread(s) per core: 2
Core(s) per socket: 48
Socket(s): 2
Stepping: 8
BogoMIPS: 4800.00
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16 pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves avx_vnni avx512_bf16 wbnoinvd ida arat avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq rdpid cldemote movdiri movdir64b md_clear serialize amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 4.5 MiB (96 instances)
L1i cache: 3 MiB (96 instances)
L2 cache: 192 MiB (96 instances)
L3 cache: 210 MiB (2 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-47,96-143
NUMA node1 CPU(s): 48-95,144-191
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-cusparselt-cu12==0.6.2
[pip3] nvidia-ml-py==12.560.30
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pynvml==12.0.0
[pip3] pyzmq==26.4.0
[pip3] torch==2.6.0
[pip3] torchao==0.9.0
[pip3] torchaudio==2.6.0
[pip3] torchvision==0.21.0
[pip3] transformers==4.51.2
[pip3] triton==3.2.0
[conda] nvidia-ml-py 12.570.86 pypi_0 pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.8.5.dev221+g5aa6efb9a (git sha: 5aa6efb9a)
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NV18 NV18 NV18 NV18 NV18 NV18 NV18 0-47,96-143 0 N/A
GPU1 NV18 X NV18 NV18 NV18 NV18 NV18 NV18 0-47,96-143 0 N/A
GPU2 NV18 NV18 X NV18 NV18 NV18 NV18 NV18 0-47,96-143 0 N/A
GPU3 NV18 NV18 NV18 X NV18 NV18 NV18 NV18 0-47,96-143 0 N/A
GPU4 NV18 NV18 NV18 NV18 X NV18 NV18 NV18 48-95,144-191 1 N/A
GPU5 NV18 NV18 NV18 NV18 NV18 X NV18 NV18 48-95,144-191 1 N/A
GPU6 NV18 NV18 NV18 NV18 NV18 NV18 X NV18 48-95,144-191 1 N/A
GPU7 NV18 NV18 NV18 NV18 NV18 NV18 NV18 X 48-95,144-191 1 N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY
🐛 Describe the bug
(Originally discussed here.)
When trying to serve the model with DP, the following error occurred:
$ uv run vllm serve /path/to/model --port 8088 --served-model-name xxx --data-parallel-size 2
...
myhost:2292596:2292596 [0] init.cc:943 NCCL WARN Duplicate GPU detected : rank 0 and rank 1 both on CUDA device 53000
myhost:2292597:2292597 [0] init.cc:943 NCCL WARN Duplicate GPU detected : rank 1 and rank 0 both on CUDA device 53000
...
(EngineCore_1 pid=2292597) File "/ephnvme/colin/code/prizetrain/.venv/lib/python3.12/site-packages/vllm/distributed/device_communicators/cuda_communicator.py", line 39, in __init__
(EngineCore_0 pid=2292596) self.NCCL_CHECK(self._funcs["ncclCommInitRank"](ctypes.byref(comm),
(EngineCore_1 pid=2292597) self.pynccl_comm = PyNcclCommunicator(
(EngineCore_0 pid=2292596) File "/ephnvme/colin/code/prizetrain/.venv/lib/python3.12/site-packages/vllm/distributed/device_communicators/pynccl_wrapper.py", line 256, in NCCL_CHECK
(EngineCore_1 pid=2292597) ^^^^^^^^^^^^^^^^^^^
(EngineCore_0 pid=2292596) raise RuntimeError(f"NCCL error: {error_str}")
(EngineCore_1 pid=2292597) File "/ephnvme/colin/code/prizetrain/.venv/lib/python3.12/site-packages/vllm/distributed/device_communicators/pynccl.py", line 99, in __init__
(EngineCore_1 pid=2292597) self.comm: ncclComm_t = self.nccl.ncclCommInitRank(
(EngineCore_1 pid=2292597) ^^^^^^^^^^^^^^^^^^^^^^^^^^^
(EngineCore_0 pid=2292596) RuntimeError: NCCL error: invalid usage (run with NCCL_DEBUG=WARN for details)
(EngineCore_1 pid=2292597) File "/ephnvme/colin/code/prizetrain/.venv/lib/python3.12/site-packages/vllm/distributed/device_communicators/pynccl_wrapper.py", line 277, in ncclCommInitRank
(EngineCore_1 pid=2292597) self.NCCL_CHECK(self._funcs["ncclCommInitRank"](ctypes.byref(comm),
(EngineCore_1 pid=2292597) File "/ephnvme/colin/code/prizetrain/.venv/lib/python3.12/site-packages/vllm/distributed/device_communicators/pynccl_wrapper.py", line 256, in NCCL_CHECK
(EngineCore_1 pid=2292597) raise RuntimeError(f"NCCL error: {error_str}")
(EngineCore_1 pid=2292597) RuntimeError: NCCL error: invalid usage (run with NCCL_DEBUG=WARN for details)
However, if I just use a conda environment without uv
, with the same vllm version, running vllm serve ... -dp 2
, the error above will not happen.
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working