-
-
Notifications
You must be signed in to change notification settings - Fork 10.6k
Description
Your current environment
ERROR 05-28 19:38:44 [dump_input.py:68] Dumping input data
--- Logging error ---
Traceback (most recent call last):
File "/root/miniconda3/envs/vllm-qwen3/lib/python3.12/site-packages/vllm/v1/engine/core.py", line 207, in execute_model
return self.model_executor.execute_model(scheduler_output)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/root/miniconda3/envs/vllm-qwen3/lib/python3.12/site-packages/vllm/v1/executor/abstract.py", line 86, in execute_model
output = self.collective_rpc("execute_model",
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/root/miniconda3/envs/vllm-qwen3/lib/python3.12/site-packages/vllm/executor/uniproc_executor.py", line 56, in collective_rpc
answer = run_method(self.driver_worker, method, args, kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/root/miniconda3/envs/vllm-qwen3/lib/python3.12/site-packages/vllm/utils.py", line 2605, in run_method
return func(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^
File "/root/miniconda3/envs/vllm-qwen3/lib/python3.12/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
return func(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^
File "/root/miniconda3/envs/vllm-qwen3/lib/python3.12/site-packages/vllm/v1/worker/gpu_worker.py", line 276, in execute_model
output = self.model_runner.execute_model(scheduler_output,
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/root/miniconda3/envs/vllm-qwen3/lib/python3.12/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
return func(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^
File "/root/miniconda3/envs/vllm-qwen3/lib/python3.12/site-packages/vllm/v1/worker/gpu_model_runner.py", line 1196, in execute_model
model_output = self.model(
^^^^^^^^^^^
File "/root/miniconda3/envs/vllm-qwen3/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1767, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/root/miniconda3/envs/vllm-qwen3/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1778, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/root/miniconda3/envs/vllm-qwen3/lib/python3.12/site-packages/vllm/model_executor/models/qwen3.py", line 300, in forward
hidden_states = self.model(input_ids, positions, intermediate_tensors,
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/root/miniconda3/envs/vllm-qwen3/lib/python3.12/site-packages/vllm/compilation/decorators.py", line 245, in call
model_output = self.forward(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/root/miniconda3/envs/vllm-qwen3/lib/python3.12/site-packages/vllm/model_executor/models/qwen2.py", line 340, in forward
def forward(
File "/root/miniconda3/envs/vllm-qwen3/lib/python3.12/site-packages/torch/_dynamo/eval_frame.py", line 372, in call
return super().call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/root/miniconda3/envs/vllm-qwen3/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1767, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/root/miniconda3/envs/vllm-qwen3/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1778, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/root/miniconda3/envs/vllm-qwen3/lib/python3.12/site-packages/torch/_dynamo/eval_frame.py", line 893, in _fn
return fn(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^
File "/root/miniconda3/envs/vllm-qwen3/lib/python3.12/site-packages/torch/fx/graph_module.py", line 840, in call_wrapped
return self._wrapped_call(self, *args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/root/miniconda3/envs/vllm-qwen3/lib/python3.12/site-packages/torch/fx/graph_module.py", line 416, in call
raise e
File "/root/miniconda3/envs/vllm-qwen3/lib/python3.12/site-packages/torch/fx/graph_module.py", line 403, in call
return super(self.cls, obj).call(*args, **kwargs) # type: ignore[misc]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/root/miniconda3/envs/vllm-qwen3/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1767, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/root/miniconda3/envs/vllm-qwen3/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1778, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "<eval_with_key>.74", line 304, in forward
submod_1 = self.submod_1(getitem, s72, getitem_1, getitem_2, getitem_3); getitem = getitem_1 = getitem_2 = submod_1 = None
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/root/miniconda3/envs/vllm-qwen3/lib/python3.12/site-packages/torch/fx/graph_module.py", line 840, in call_wrapped
return self._wrapped_call(self, *args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/root/miniconda3/envs/vllm-qwen3/lib/python3.12/site-packages/torch/fx/graph_module.py", line 416, in call
raise e
File "/root/miniconda3/envs/vllm-qwen3/lib/python3.12/site-packages/torch/fx/graph_module.py", line 403, in call
return super(self.cls, obj).call(*args, **kwargs) # type: ignore[misc]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/root/miniconda3/envs/vllm-qwen3/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1767, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/root/miniconda3/envs/vllm-qwen3/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1778, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "<eval_with_key>.2", line 5, in forward
unified_attention_with_output = torch.ops.vllm.unified_attention_with_output(query_2, key_2, value, output_1, 'model.layers.0.self_attn.attn'); query_2 = key_2 = value = output_1 = unified_attention_with_output = None
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/root/miniconda3/envs/vllm-qwen3/lib/python3.12/site-packages/torch/_ops.py", line 1208, in call
return self._op(*args, **(kwargs or {}))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/root/miniconda3/envs/vllm-qwen3/lib/python3.12/site-packages/vllm/attention/layer.py", line 425, in unified_attention_with_output
self.impl.forward(self,
File "/root/miniconda3/envs/vllm-qwen3/lib/python3.12/site-packages/vllm/v1/attention/backends/flash_attn.py", line 622, in forward
flash_attn_varlen_func(
File "/root/miniconda3/envs/vllm-qwen3/lib/python3.12/site-packages/vllm/vllm_flash_attn/flash_attn_interface.py", line 227, in flash_attn_varlen_func
out, softmax_lse = torch.ops._vllm_fa2_C.varlen_fwd(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/root/miniconda3/envs/vllm-qwen3/lib/python3.12/site-packages/torch/_ops.py", line 1208, in call
return self._op(*args, **(kwargs or {}))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
RuntimeError: CUDA error: no kernel image is available for execution on the device
CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1
Compile with TORCH_USE_CUDA_DSA
to enable device-side assertions.
run:
CUDA_VISIBLE_DEVICES=0 vllm serve qwen3-4B/ --served-model-name Qwen3-4B --port 11435 --gpu-memory-utilization 0.5 --host 0.0.0.0 --enable-auto-tool-choice --tool-call-parser hermes --max-model-len 8192
python collect_env.py
INFO 05-28 19:51:57 [init.py:243] Automatically detected platform cuda.
Collecting environment information...
System Info
==============================
OS : Ubuntu 22.04.5 LTS (x86_64)
GCC version : (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version : Could not collect
CMake version : version 3.22.1
Libc version : glibc-2.35
==============================
PyTorch Info
PyTorch version : 2.8.0.dev20250527+cu128
Is debug build : False
CUDA used to build PyTorch : 12.8
ROCM used to build PyTorch : N/A
==============================
Python Environment
Python version : 3.12.10 | packaged by conda-forge | (main, Apr 10 2025, 22:21:13) [GCC 13.3.0] (64-bit runtime)
Python platform : Linux-6.8.0-59-generic-x86_64-with-glibc2.35
==============================
CUDA / GPU Info
Is CUDA available : True
CUDA runtime version : 12.8.61
CUDA_MODULE_LOADING set to : LAZY
GPU models and configuration : GPU 0: NVIDIA GeForce RTX 5090
Nvidia driver version : 570.144
cuDNN version : Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.10.1
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.10.1
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.10.1
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.10.1
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.10.1
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.10.1
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.10.1
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.10.1
HIP runtime version : N/A
MIOpen runtime version : N/A
Is XNNPACK available : True
==============================
CPU Info
架构: x86_64
CPU 运行模式: 32-bit, 64-bit
Address sizes: 46 bits physical, 57 bits virtual
字节序: Little Endian
CPU: 28
在线 CPU 列表: 0-27
厂商 ID: GenuineIntel
型号名称: Intel(R) Xeon(R) Platinum 8336C CPU @ 2.30GHz
CPU 系列: 6
型号: 106
每个核的线程数: 1
每个座的核数: 28
座: 1
步进: 6
BogoMIPS: 4599.95
标记: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopology cpuid tsc_known_freq pni pclmulqdq dtes64 vmx ssse3 fma cx16 pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves wbnoinvd arat vnmi avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq la57 rdpid fsrm md_clear flush_l1d arch_capabilities
虚拟化: VT-x
超管理器厂商: KVM
虚拟化类型: 完全
L1d 缓存: 896 KiB (28 instances)
L1i 缓存: 896 KiB (28 instances)
L2 缓存: 112 MiB (28 instances)
L3 缓存: 16 MiB (1 instance)
NUMA 节点: 1
NUMA 节点0 CPU: 0-27
Vulnerability Gather data sampling: Unknown: Dependent on hypervisor status
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT Host state unknown
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Mitigation; TSX disabled
==============================
Versions of relevant libraries
[pip3] numpy==2.1.2
[pip3] nvidia-cublas-cu12==12.8.4.1
[pip3] nvidia-cuda-cupti-cu12==12.8.90
[pip3] nvidia-cuda-nvrtc-cu12==12.8.93
[pip3] nvidia-cuda-runtime-cu12==12.8.90
[pip3] nvidia-cudnn-cu12==9.8.0.87
[pip3] nvidia-cufft-cu12==11.3.3.83
[pip3] nvidia-cufile-cu12==1.13.1.3
[pip3] nvidia-curand-cu12==10.3.9.90
[pip3] nvidia-cusolver-cu12==11.7.3.90
[pip3] nvidia-cusparse-cu12==12.5.8.93
[pip3] nvidia-cusparselt-cu12==0.6.3
[pip3] nvidia-nccl-cu12==2.26.5
[pip3] nvidia-nvjitlink-cu12==12.8.93
[pip3] nvidia-nvtx-cu12==12.8.90
[pip3] pytorch-triton==3.3.1+gitc8757738
[pip3] pyzmq==26.4.0
[pip3] torch==2.8.0.dev20250527+cu128
[pip3] torchaudio==2.6.0.dev20250527+cu128
[pip3] torchvision==0.22.0.dev20250527+cu128
[pip3] transformers==4.52.3
[pip3] triton==3.3.0
[conda] numpy 2.1.2 pypi_0 pypi
[conda] nvidia-cublas-cu12 12.8.4.1 pypi_0 pypi
[conda] nvidia-cuda-cupti-cu12 12.8.90 pypi_0 pypi
[conda] nvidia-cuda-nvrtc-cu12 12.8.93 pypi_0 pypi
[conda] nvidia-cuda-runtime-cu12 12.8.90 pypi_0 pypi
[conda] nvidia-cudnn-cu12 9.8.0.87 pypi_0 pypi
[conda] nvidia-cufft-cu12 11.3.3.83 pypi_0 pypi
[conda] nvidia-cufile-cu12 1.13.1.3 pypi_0 pypi
[conda] nvidia-curand-cu12 10.3.9.90 pypi_0 pypi
[conda] nvidia-cusolver-cu12 11.7.3.90 pypi_0 pypi
[conda] nvidia-cusparse-cu12 12.5.8.93 pypi_0 pypi
[conda] nvidia-cusparselt-cu12 0.6.3 pypi_0 pypi
[conda] nvidia-nccl-cu12 2.26.5 pypi_0 pypi
[conda] nvidia-nvjitlink-cu12 12.8.93 pypi_0 pypi
[conda] nvidia-nvtx-cu12 12.8.90 pypi_0 pypi
[conda] pytorch-triton 3.3.1+gitc8757738 pypi_0 pypi
[conda] pyzmq 26.4.0 pypi_0 pypi
[conda] torch 2.8.0.dev20250527+cu128 pypi_0 pypi
[conda] torchaudio 2.6.0.dev20250527+cu128 pypi_0 pypi
[conda] torchvision 0.22.0.dev20250527+cu128 pypi_0 pypi
[conda] transformers 4.52.3 pypi_0 pypi
[conda] triton 3.3.0 pypi_0 pypi
==============================
vLLM Info
ROCM Version : Could not collect
Neuron SDK Version : N/A
vLLM Version : 0.9.0
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X 0-27 0 N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
==============================
Environment Variables
LD_LIBRARY_PATH=/usr/local/cuda-12.8/lib64:/usr/local/cuda-12.8/lib64:/usr/local/cuda-12.8/lib64:
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY
environment
python --version
Python 3.12.10
pip show vllm
Name: vllm
Version: 0.9.0
Summary: A high-throughput and memory-efficient inference and serving engine for LLMs
Home-page: https://github.com/vllm-project/vllm
Author: vLLM Team
Author-email:
License-Expression: Apache-2.0
Location: /root/miniconda3/envs/vllm-qwen3/lib/python3.12/site-packages
Requires: aiohttp, blake3, cachetools, cloudpickle, compressed-tensors, depyf, einops, fastapi, filelock, gguf, huggingface-hub, lark, llguidance, lm-format-enforcer, mistral_common, msgspec, ninja, numba, numpy, openai, opencv-python-headless, opentelemetry-api, opentelemetry-exporter-otlp, opentelemetry-sdk, opentelemetry-semantic-conventions-ai, outlines, partial-json-parser, pillow, prometheus-fastapi-instrumentator, prometheus_client, protobuf, psutil, py-cpuinfo, pydantic, python-json-logger, pyyaml, pyzmq, ray, regex, requests, scipy, sentencepiece, setuptools, six, tiktoken, tokenizers, torch, torchaudio, torchvision, tqdm, transformers, typing_extensions, watchfiles, xformers, xgrammar
Required-by:
nvcc -V:
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2025 NVIDIA Corporation
Built on Wed_Jan_15_19:20:09_PST_2025
Cuda compilation tools, release 12.8, V12.8.61
Build cuda_12.8.r12.8/compiler.35404655_0
pip show torch
Name: torch
Version: 2.8.0.dev20250527+cu128
Summary: Tensors and Dynamic neural networks in Python with strong GPU acceleration
Home-page: https://pytorch.org/
Author: PyTorch Team
Author-email: [email protected]
License: BSD-3-Clause
Location: /root/miniconda3/envs/vllm-qwen3/lib/python3.12/site-packages
Requires: filelock, fsspec, jinja2, networkx, nvidia-cublas-cu12, nvidia-cuda-cupti-cu12, nvidia-cuda-nvrtc-cu12, nvidia-cuda-runtime-cu12, nvidia-cudnn-cu12, nvidia-cufft-cu12, nvidia-cufile-cu12, nvidia-curand-cu12, nvidia-cusolver-cu12, nvidia-cusparse-cu12, nvidia-cusparselt-cu12, nvidia-nccl-cu12, nvidia-nvjitlink-cu12, nvidia-nvtx-cu12, pytorch-triton, setuptools, sympy, typing-extensions
Required-by: compressed-tensors, outlines, torchaudio, torchvision, vllm, xformers, xgrammar
nvidia-smi:
| NVIDIA-SMI 570.144 Driver Version: 570.144 CUDA Version: 12.8 |
|-----------------------------------------+------------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+========================+======================|
| 0 NVIDIA GeForce RTX 5090 Off | 00000000:06:10.0 Off | N/A |
| 0% 51C P8 17W / 575W | 3MiB / 32607MiB | 0% Default |
| | | N/A |
🐛 Describe the bug
run
CUDA_VISIBLE_DEVICES=0 vllm serve qwen3-4B/ --served-model-name Qwen3-4B --port 11435 --gpu-memory-utilization 0.5 --host 0.0.0.0 --enable-auto-tool-choice --tool-call-parser hermes --max-model-len 8192
output
RuntimeError: CUDA error: no kernel image is available for execution on the device
CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1
Compile with TORCH_USE_CUDA_DSA
to enable device-side assertions.
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.