Skip to content

[Bug]: Unexpected prompt token logprob behaviors of llama 2 when setting echo=True for openai-api server #5334

@fywalter

Description

@fywalter

Your current environment

The output of `python collect_env.py`

Collecting environment information...
PyTorch version: 2.3.0+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A

OS: Ubuntu 20.04.6 LTS (x86_64)
GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
Clang version: 10.0.0-4ubuntu1
CMake version: version 3.29.3
Libc version: glibc-2.31

Python version: 3.9.19 (main, May 6 2024, 19:43:03) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.4.0-169-generic-x86_64-with-glibc2.31
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA RTX A6000
GPU 1: NVIDIA RTX A6000
GPU 2: NVIDIA RTX A6000
GPU 3: NVIDIA RTX A6000
GPU 4: NVIDIA RTX A6000
GPU 5: NVIDIA RTX A6000
GPU 6: NVIDIA RTX A6000
GPU 7: NVIDIA RTX A6000

Nvidia driver version: 545.23.08
cuDNN version: Probably one of the following:
/usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn.so.8.7.0
/usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.7.0
/usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.7.0
/usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.7.0
/usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.7.0
/usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.7.0
/usr/local/cuda-11.3/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.7.0
/usr/local/cuda-12.1/targets/x86_64-linux/lib/libcudnn.so.8.9.2
/usr/local/cuda-12.1/targets/x86_64-linux/lib/libcudnn.so.9.1.1
/usr/local/cuda-12.1/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.9.2
/usr/local/cuda-12.1/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.9.2
/usr/local/cuda-12.1/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.9.2
/usr/local/cuda-12.1/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.9.2
/usr/local/cuda-12.1/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.9.2
/usr/local/cuda-12.1/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.9.2
/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcudnn.so.8.9.2
/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcudnn.so.9.1.1
/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.9.2
/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.9.2
/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.9.2
/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.9.2
/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.9.2
/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.9.2
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 48 bits physical, 48 bits virtual
CPU(s): 192
On-line CPU(s) list: 0-191
Thread(s) per core: 2
Core(s) per socket: 48
Socket(s): 2
NUMA node(s): 2
Vendor ID: AuthenticAMD
CPU family: 25
Model: 1
Model name: AMD EPYC 7643 48-Core Processor
Stepping: 1
Frequency boost: enabled
CPU MHz: 2770.121
CPU max MHz: 2300.0000
CPU min MHz: 1500.0000
BogoMIPS: 4600.13
Virtualization: AMD-V
L1d cache: 3 MiB
L1i cache: 3 MiB
L2 cache: 48 MiB
L3 cache: 512 MiB
NUMA node0 CPU(s): 0-47,96-143
NUMA node1 CPU(s): 48-95,144-191
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr wbnoinvd arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload vgif umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca

Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] torch==2.3.0
[pip3] transformers==4.41.1
[pip3] triton==2.3.0
[pip3] vllm_nccl_cu12==2.18.1.0.4.0
[conda] numpy 1.26.4 pypi_0 pypi
[conda] nvidia-nccl-cu12 2.20.5 pypi_0 pypi
[conda] torch 2.3.0 pypi_0 pypi
[conda] transformers 4.41.1 pypi_0 pypi
[conda] triton 2.3.0 pypi_0 pypi
[conda] vllm-nccl-cu12 2.18.1.0.4.0 pypi_0 pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.4.2
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NV4 SYS SYS SYS SYS SYS SYS 0-47,96-143 0 N/A
GPU1 NV4 X SYS SYS SYS SYS SYS SYS 0-47,96-143 0 N/A
GPU2 SYS SYS X NV4 SYS SYS SYS SYS 0-47,96-143 0 N/A
GPU3 SYS SYS NV4 X SYS SYS SYS SYS 0-47,96-143 0 N/A
GPU4 SYS SYS SYS SYS X NV4 SYS SYS 48-95,144-191 1 N/A
GPU5 SYS SYS SYS SYS NV4 X SYS SYS 48-95,144-191 1 N/A
GPU6 SYS SYS SYS SYS SYS SYS X SYS 48-95,144-191 1 N/A
GPU7 SYS SYS SYS SYS SYS SYS SYS X 48-95,144-191 1 N/A

Legend:

X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks

🐛 Describe the bug

I set up the openai api server using

python -m vllm.entrypoints.openai.api_server \
    --model meta-llama/Llama-2-7b-hf \
    --max-logprobs 100 \
    --host 0.0.0.0 \
    --port xxxx

Then I try to get the logprobs of of tokens in a given prompt by setting logprobs=1 and echo=True using the following code

from openai import OpenAI
model = "meta-llama/Llama-2-7b-hf"
openai_api_key = "EMPTY"
client = OpenAI(
    api_key=openai_api_key,
    base_url=HOST_DICT[model],
)
logprobs = 1
prompt = "\n1. Carol has 20"
completion = client.completions.create(model=model, 
                                       prompt=prompt,
                                       max_tokens=5,
                                       temperature=0,
                                       logprobs=logprobs,
                                       echo=True)
print("vLLM Completion text:", completion.choices[0].text)
print("vLLM tokens:", completion.choices[0].logprobs.tokens)
print("vLLM Completion logprobs:", completion.choices[0].logprobs)

The generated texts look great, but the logprobs seem to be really strange:

vLLM Completion text: 
1. Carol has 2000 books in her
vLLM tokens: ['<s>', '', '\n', '1', '.', '\n Carol', '\n\n has', '\n\n\n ', '\n\n\n\n2', '\n\n\n\n\n0', '0', '0', ' books', ' in', ' her']
vLLM Completion logprobs: Logprobs(text_offset=[0, 3, 3, 4, 5, 6, 13, 19, 23, 28, 34, 35, 36, 42, 45], token_logprobs=[None, -4.1065497398376465, -4.179874420166016, -5.703912258148193, -0.9323832988739014, -10.607088088989258, -6.339632987976074, -4.3729047775268555, -1.8068292140960693, -1.6547526121139526, -2.1797218322753906, -2.6753900051116943, -2.8350002765655518, -1.0952296257019043, -0.1524326652288437], tokens=['<s>', '', '\n', '1', '.', '\n Carol', '\n\n has', '\n\n\n ', '\n\n\n\n2', '\n\n\n\n\n0', '0', '0', ' books', ' in', ' her'], top_logprobs=[None, {'': -4.1065497398376465, 'Tags': -2.5245184898376465}, {'\n': -4.179874420166016, '1': -1.4376866817474365}, {'1': -5.703912258148193, '\n': -1.1257872581481934}, {'.': -0.9323832988739014}, {'\n Carol': -10.607088088989258, '\n The': -2.757479190826416}, {'\n\n has': -6.339632987976074, '\n\nyn': -1.4314298629760742}, {'\n\n\n ': -4.3729047775268555, '\n\n\n a': -1.7049362659454346}, {'\n\n\n\n2': -1.8068292140960693, '\n\n\n\n1': -1.3771417140960693}, {'\n\n\n\n\n0': -1.6547526121139526}, {'0': -2.1797218322753906}, {'0': -2.6753900051116943}, {' books': -2.8350002765655518}, {' in': -1.0952296257019043}, {' her': -0.1524326652288437}])

It returns "tokens" like '\n\n\n\n2' , which is neither in the original prompt or even a single token in the llama-2 vocabulary. On the other hand, I tried using some other AI provider (fireworks) and the behavior is expected:

from openai import OpenAI

logprobs = 1
with open("fireworks-key.txt", "r") as f:
    fireworks_key = f.read().strip()

client_fireworks = OpenAI(
    base_url = "https://api.fireworks.ai/inference/v1",
    api_key=fireworks_key,
)
prompt = "\n1. Carol has 20"

completion = client_fireworks.completions.create(model="accounts/fireworks/models/llama-v2-7b",
                                                    prompt=prompt,
                                                    max_tokens=10,
                                                    temperature=0,
                                                    logprobs=logprobs,
                                                    echo=True)
print("Fireworks Completion text:", completion.choices[0].text)
print("Fireworks tokens:", completion.choices[0].logprobs.tokens)
print("Fireworks Completion logprobs:", completion.choices[0].logprobs)

Outputs:

Fireworks Completion text:  
1. Carol has 2000 books in her library. She has 
Fireworks tokens: ['', ' ', '\n', '1', '.', ' Carol', ' has', ' ', '2', '0', '0', '0', ' books', ' in', ' her', ' library', '.', ' She', ' has', ' ']
Fireworks Completion logprobs: Logprobs(text_offset=[0, 0, 1, 2, 3, 4, 10, 14, 15, 16, 17, 18, 19, 25, 28, 32, 40, 41, 45, 49], token_logprobs=[0.0, -3.16015625, -9.4765625, -5.703125, -0.92675781, -10.6015625, -6.33984375, -4.375, -1.80371094, -1.65429688, -2.17938995, -2.67908955, -2.83534431, -1.09457016, -0.15235297, -0.66951698, -0.24534534, -1.22056556, -1.91010427, -1.18275023], tokens=['', ' ', '\n', '1', '.', ' Carol', ' has', ' ', '2', '0', '0', '0', ' books', ' in', ' her', ' library', '.', ' She', ' has', ' '], top_logprobs=[{' ⁇ ': 0.0}, {' Tags': -2.546875}, {'1': -1.43945312}, {'\n': -1.12597656}, {'.': -0.92675781}, {' The': -2.75976562}, {'yn': -1.43457031}, {' a': -1.70605469}, {'1': -1.38183594}, {'0': -1.65429688}, {'0': -2.17938995}, {'0': -2.67908955}, {' books': -2.83534431}, {' in': -1.09457016}, {' her': -0.15235297}, {' library': -0.66951698}, {'.': -0.24534534}, {' She': -1.22056556}, {' has': -1.91010427}, {' ': -1.18275023}], token_ids=[1, 29871, 13, 29896, 29889, 8562, 756, 29871, 29906, 29900, 29900, 29900, 8277, 297, 902, 3489, 29889, 2296, 756, 29871])

I tried llama-3 using vLLM and it works correctly, why is this happening to Llama-2 (I tried other sizes of Llama-2 and all have this problem)?

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions