Skip to content

[Bug]: tests/basic_correctness/test_chunked_prefill.py is failing on main in fp32  #6332

@tdoublep

Description

@tdoublep

Your current environment

Collecting environment information...
PyTorch version: 2.3.0+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.2 LTS (x86_64)
GCC version: (Ubuntu 11.3.0-1ubuntu1~22.04) 11.3.0
Clang version: Could not collect
CMake version: version 3.29.6
Libc version: glibc-2.35

Python version: 3.11.9 | packaged by conda-forge | (main, Apr 19 2024, 18:36:13) [GCC 12.3.0] (64-bit runtime)
Python platform: Linux-5.15.0-71-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: 
GPU 0: NVIDIA A100-SXM4-80GB
GPU 1: NVIDIA A100-SXM4-80GB
GPU 2: NVIDIA A100-SXM4-80GB
GPU 3: NVIDIA A100-SXM4-80GB
GPU 4: NVIDIA A100-SXM4-80GB
GPU 5: NVIDIA A100-SXM4-80GB
GPU 6: NVIDIA A100-SXM4-80GB
GPU 7: NVIDIA A100-SXM4-80GB

Nvidia driver version: 535.129.03
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                    x86_64
CPU op-mode(s):                  32-bit, 64-bit
Address sizes:                   46 bits physical, 57 bits virtual
Byte Order:                      Little Endian
CPU(s):                          128
On-line CPU(s) list:             0-127
Vendor ID:                       GenuineIntel
Model name:                      Intel(R) Xeon(R) Platinum 8358 CPU @ 2.60GHz
CPU family:                      6
Model:                           106
Thread(s) per core:              2
Core(s) per socket:              32
Socket(s):                       2
Stepping:                        6
CPU max MHz:                     2600.0000
CPU min MHz:                     800.0000
BogoMIPS:                        5200.00
Flags:                           fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect wbnoinvd dtherm arat pln pts avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid fsrm md_clear pconfig flush_l1d arch_capabilities
L1d cache:                       3 MiB (64 instances)
L1i cache:                       2 MiB (64 instances)
L2 cache:                        80 MiB (64 instances)
L3 cache:                        96 MiB (2 instances)
NUMA node(s):                    4
NUMA node0 CPU(s):               0-15,64-79
NUMA node1 CPU(s):               16-31,80-95
NUMA node2 CPU(s):               32-47,96-111
NUMA node3 CPU(s):               48-63,112-127
Vulnerability Itlb multihit:     Not affected
Vulnerability L1tf:              Not affected
Vulnerability Mds:               Not affected
Vulnerability Meltdown:          Not affected
Vulnerability Mmio stale data:   Mitigation; Clear CPU buffers; SMT vulnerable
Vulnerability Retbleed:          Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:        Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:        Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence
Vulnerability Srbds:             Not affected
Vulnerability Tsx async abort:   Not affected

Versions of relevant libraries:
[pip3] mypy==1.9.0
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.26.4
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] torch==2.3.0
[pip3] torchvision==0.18.0
[pip3] transformers==4.41.2
[pip3] triton==2.3.0
[conda] numpy                     1.26.4                   pypi_0    pypi
[conda] nvidia-nccl-cu12          2.20.5                   pypi_0    pypi
[conda] torch                     2.3.0                    pypi_0    pypi
[conda] torchvision               0.18.0                   pypi_0    pypi
[conda] transformers              4.41.2                   pypi_0    pypi
[conda] triton                    2.3.0                    pypi_0    pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.5.1
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0	GPU1	GPU2	GPU3	GPU4	GPU5	GPU6	GPU7	NIC0	NIC1	NIC2	NIC3	NIC4	NIC5	NIC6	NIC7	CPU Affinity	NUMA Affinity	GPU NUMA ID
GPU0	 X 	NV12	NV12	NV12	NV12	NV12	NV12	NV12	PXB	PXB	SYS	SYS	SYS	SYS	SYS	SYS	0-15,64-79	0		N/A
GPU1	NV12	 X 	NV12	NV12	NV12	NV12	NV12	NV12	PXB	PXB	SYS	SYS	SYS	SYS	SYS	SYS	0-15,64-79	0		N/A
GPU2	NV12	NV12	 X 	NV12	NV12	NV12	NV12	NV12	SYS	SYS	PXB	PXB	SYS	SYS	SYS	SYS	0-15,64-79	0		N/A
GPU3	NV12	NV12	NV12	 X 	NV12	NV12	NV12	NV12	SYS	SYS	PXB	PXB	SYS	SYS	SYS	SYS	0-15,64-79	0		N/A
GPU4	NV12	NV12	NV12	NV12	 X 	NV12	NV12	NV12	SYS	SYS	SYS	SYS	PXB	PXB	SYS	SYS	32-47,96-111	2		N/A
GPU5	NV12	NV12	NV12	NV12	NV12	 X 	NV12	NV12	SYS	SYS	SYS	SYS	PXB	PXB	SYS	SYS	32-47,96-111	2		N/A
GPU6	NV12	NV12	NV12	NV12	NV12	NV12	 X 	NV12	SYS	SYS	SYS	SYS	SYS	SYS	PXB	PXB	48-63,112-127	3		N/A
GPU7	NV12	NV12	NV12	NV12	NV12	NV12	NV12	 X 	SYS	SYS	SYS	SYS	SYS	SYS	PXB	PXB	48-63,112-127	3		N/A
NIC0	PXB	PXB	SYS	SYS	SYS	SYS	SYS	SYS	 X 	PIX	SYS	SYS	SYS	SYS	SYS	SYS				
NIC1	PXB	PXB	SYS	SYS	SYS	SYS	SYS	SYS	PIX	 X 	SYS	SYS	SYS	SYS	SYS	SYS				
NIC2	SYS	SYS	PXB	PXB	SYS	SYS	SYS	SYS	SYS	SYS	 X 	PIX	SYS	SYS	SYS	SYS				
NIC3	SYS	SYS	PXB	PXB	SYS	SYS	SYS	SYS	SYS	SYS	PIX	 X 	SYS	SYS	SYS	SYS				
NIC4	SYS	SYS	SYS	SYS	PXB	PXB	SYS	SYS	SYS	SYS	SYS	SYS	 X 	PIX	SYS	SYS				
NIC5	SYS	SYS	SYS	SYS	PXB	PXB	SYS	SYS	SYS	SYS	SYS	SYS	PIX	 X 	SYS	SYS				
NIC6	SYS	SYS	SYS	SYS	SYS	SYS	PXB	PXB	SYS	SYS	SYS	SYS	SYS	SYS	 X 	PIX				
NIC7	SYS	SYS	SYS	SYS	SYS	SYS	PXB	PXB	SYS	SYS	SYS	SYS	SYS	SYS	PIX	 X 				

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

NIC Legend:

  NIC0: mlx5_0
  NIC1: mlx5_1
  NIC2: mlx5_2
  NIC3: mlx5_3
  NIC4: mlx5_4
  NIC5: mlx5_5
  NIC6: mlx5_6
  NIC7: mlx5_7

🐛 Describe the bug

I'm seeing tests/samplers/test_logprobs.py::test_get_prompt_logprobs failing on PR builds. I wanted to check if the failures are related to precision, so I increased the precision to float32 and saw they were still failing. Next, I wanted to check if they also fail in main branch using float32 and indeed they do.

To reproduce, apply the following patch:

diff --git a/tests/samplers/test_logprobs.py b/tests/samplers/test_logprobs.py
index 02a953da..ec064106 100644
--- a/tests/samplers/test_logprobs.py
+++ b/tests/samplers/test_logprobs.py
@@ -11,7 +11,7 @@ MODELS = ["facebook/opt-125m"]
 
 
 @pytest.mark.parametrize("model", MODELS)
-@pytest.mark.parametrize("dtype", ["half"])
+@pytest.mark.parametrize("dtype", ["float"])
 @pytest.mark.parametrize("chunked_prefill_token_size", [1, 4, 16, -1])
 @pytest.mark.parametrize("num_top_logprobs", [6])  # 32000 == vocab_size
 @pytest.mark.parametrize("detokenize", [True, False])

then run:

python -m pytest -s tests/samplers/test_logprobs.py::test_get_prompt_logprobs

will give errors like:

            for i, vllm_prompt_logprob_dict in enumerate(vllm_prompt_logprobs):
                for token_id, logprob in vllm_prompt_logprob_dict.items():
>                   torch.testing.assert_close(logprob.logprob,
                                               hf_logprob[0][i][token_id].item(),
                                               atol=1e-2,
                                               rtol=1e-2)
E                   AssertionError: Scalars are not close!
E                   
E                   Expected -3.770872116088867 but got -9.317432403564453.
E                   Absolute difference: 5.546560287475586 (up to 0.01 allowed)
E                   Relative difference: 1.4708958874024227 (up to 0.01 allowed)

tests/samplers/test_logprobs.py:99: AssertionError
========================================================================================= warnings summary =========================================================================================
tests/samplers/test_logprobs.py::test_get_prompt_logprobs[True-6-1-float-facebook/opt-125m]
tests/samplers/test_logprobs.py::test_get_prompt_logprobs[True-6-4-float-facebook/opt-125m]
tests/samplers/test_logprobs.py::test_get_prompt_logprobs[True-6-16-float-facebook/opt-125m]
tests/samplers/test_logprobs.py::test_get_prompt_logprobs[True-6--1-float-facebook/opt-125m]
tests/samplers/test_logprobs.py::test_get_prompt_logprobs[False-6-1-float-facebook/opt-125m]
tests/samplers/test_logprobs.py::test_get_prompt_logprobs[False-6-4-float-facebook/opt-125m]
tests/samplers/test_logprobs.py::test_get_prompt_logprobs[False-6-16-float-facebook/opt-125m]
tests/samplers/test_logprobs.py::test_get_prompt_logprobs[False-6--1-float-facebook/opt-125m]
  /home/zrltpa/miniforge3/envs/vllm-env/lib/python3.11/site-packages/huggingface_hub/file_download.py:1132: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.
    warnings.warn(

-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
===================================================================================== short test summary info ======================================================================================
FAILED tests/samplers/test_logprobs.py::test_get_prompt_logprobs[True-6-1-float-facebook/opt-125m] - AssertionError: Scalars are not close!
FAILED tests/samplers/test_logprobs.py::test_get_prompt_logprobs[True-6-4-float-facebook/opt-125m] - AssertionError: Scalars are not close!
FAILED tests/samplers/test_logprobs.py::test_get_prompt_logprobs[True-6-16-float-facebook/opt-125m] - AssertionError: Scalars are not close!
FAILED tests/samplers/test_logprobs.py::test_get_prompt_logprobs[False-6-1-float-facebook/opt-125m] - AssertionError: Scalars are not close!
FAILED tests/samplers/test_logprobs.py::test_get_prompt_logprobs[False-6-4-float-facebook/opt-125m] - AssertionError: Scalars are not close!
FAILED tests/samplers/test_logprobs.py::test_get_prompt_logprobs[False-6-16-float-facebook/opt-125m] - AssertionError: Scalars are not close!
======================================================================== 6 failed, 2 passed, 8 warnings in 99.12s (0:01:39) ========================================================================

weirdly they pass in float16/half.

Maybe this is expected? I would have thought that these tests should also pass in float32

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions