Skip to content

[Bug]: Can't load gemma-2-9b-it with vllm 0.5.2 #6462

@vlsav

Description

@vlsav

Your current environment

PyTorch version: 2.3.1+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A

OS: RED OS release MUROM (7.3.4) Standard Edition (x86_64)
GCC version: (GCC) 11.4.1 20230605 (Red Soft 11.4.0-1)
Clang version: Could not collect
CMake version: version 3.29.2
Libc version: glibc-2.28

Python version: 3.10.9 (main, Jan 11 2023, 15:21:40) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-6.1.52-1.el7.3.x86_64-x86_64-with-glibc2.28
Is CUDA available: True
CUDA runtime version: 12.1.66
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: NVIDIA GeForce RTX 4090
Nvidia driver version: 530.30.02
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Архитектура:                        x86_64
CPU op-mode(s):                     32-bit, 64-bit
Address sizes:                      46 bits physical, 48 bits virtual
Порядок байт:                       Little Endian
CPU(s):                             32
On-line CPU(s) list:                0-31
ID прроизводителя:                  GenuineIntel
Имя модели:                         13th Gen Intel(R) Core(TM) i9-13900K
Семейство ЦПУ:                      6
Модель:                             183
Thread(s) per core:                 2
Ядер на сокет:                      24
Сокетов:                            1
Степпинг:                           1
CPU max MHz:                        5800,0000
CPU min MHz:                        800,0000
BogoMIPS:                           5990.40
Флаги:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb intel_pt sha_ni xsaveopt xsavec xgetbv1 xsaves split_lock_detect avx_vnni dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp hwp_pkg_req hfi umip pku ospke waitpkg gfni vaes vpclmulqdq tme rdpid movdiri movdir64b fsrm md_clear serialize pconfig arch_lbr ibt flush_l1d arch_capabilities
Виртуализация:                      VT-x
L1d cache:                          896 KiB (24 instances)
L1i cache:                          1,3 MiB (24 instances)
L2 cache:                           32 MiB (12 instances)
L3 cache:                           36 MiB (1 instance)
NUMA node(s):                       1
NUMA node0 CPU(s):                  0-31
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit:        Not affected
Vulnerability L1tf:                 Not affected
Vulnerability Mds:                  Not affected
Vulnerability Meltdown:             Not affected
Vulnerability Mmio stale data:      Not affected
Vulnerability Retbleed:             Not affected
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass:    Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:           Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Not affected

Versions of relevant libraries:
[pip3] flashinfer==0.0.8+cu121torch2.3
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.26.4
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] onnxruntime==1.18.0
[pip3] sentence-transformers==2.2.2
[pip3] torch==2.3.1
[pip3] torchvision==0.18.1
[pip3] transformers==4.42.4
[pip3] transformers-stream-generator==0.0.5
[pip3] triton==2.3.1
[pip3] vllm-nccl-cu12==2.18.1.0.4.0
[conda] numpy                     1.26.4                   pypi_0    pypi
[conda] sentence-transformers     2.2.2                    pypi_0    pypi
[conda] transformers              4.40.1                   pypi_0    pypi
[conda] vllm-nccl-cu12            2.18.1.0.4.0             pypi_0    pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.5.2
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0    CPU Affinity    NUMA Affinity
GPU0     X      0-31            N/A

🐛 Describe the bug

Successfully launched gemma-2-9b-it with vlmm 0.5.1.
Following script was used
export VLLM_ATTENTION_BACKEND=FLASHINFER
python -m vllm.entrypoints.openai.api_server --port=8080 --host=0.0.0.0 --model /models/gemma-2-9b-it --quantization fp8 --enforce-eager --seed 1234 --served-model-name gemma-2-9b
no issues (except sliding window warning and capping the max length to the sliding window size (4096).
Same script after installing vllm 0.5.2 gives error message:

[rank0]: Traceback (most recent call last):
[rank0]:   File "/opt/llm/miniconda3/lib/python3.10/runpy.py", line 196, in _run_module_as_main
[rank0]:     return _run_code(code, main_globals, None,
[rank0]:   File "/opt/llm/miniconda3/lib/python3.10/runpy.py", line 86, in _run_code
[rank0]:     exec(code, run_globals)
[rank0]:   File "/home/testvllm/.local/lib/python3.10/site-packages/vllm/entrypoints/openai/api_server.py", line 282, in <module>
[rank0]:     run_server(args)
[rank0]:   File "/home/testvllm/.local/lib/python3.10/site-packages/vllm/entrypoints/openai/api_server.py", line 224, in run_server
[rank0]:     if llm_engine is not None else AsyncLLMEngine.from_engine_args(
[rank0]:   File "/home/testvllm/.local/lib/python3.10/site-packages/vllm/engine/async_llm_engine.py", line 444, in from_engine_args
[rank0]:     engine = cls(
[rank0]:   File "/home/testvllm/.local/lib/python3.10/site-packages/vllm/engine/async_llm_engine.py", line 373, in __init__
[rank0]:     self.engine = self._init_engine(*args, **kwargs)
[rank0]:   File "/home/testvllm/.local/lib/python3.10/site-packages/vllm/engine/async_llm_engine.py", line 520, in _init_engine
[rank0]:     return engine_class(*args, **kwargs)
[rank0]:   File "/home/testvllm/.local/lib/python3.10/site-packages/vllm/engine/llm_engine.py", line 249, in __init__
[rank0]:     self.model_executor = executor_class(
[rank0]:   File "/home/testvllm/.local/lib/python3.10/site-packages/vllm/executor/executor_base.py", line 150, in __init__
[rank0]:     super().__init__(model_config, cache_config, parallel_config,
[rank0]:   File "/home/testvllm/.local/lib/python3.10/site-packages/vllm/executor/executor_base.py", line 46, in __init__
[rank0]:     self._init_executor()
[rank0]:   File "/home/testvllm/.local/lib/python3.10/site-packages/vllm/executor/gpu_executor.py", line 25, in _init_executor
[rank0]:     self.driver_worker.load_model()
[rank0]:   File "/home/testvllm/.local/lib/python3.10/site-packages/vllm/worker/worker.py", line 139, in load_model
[rank0]:     self.model_runner.load_model()
[rank0]:   File "/home/testvllm/.local/lib/python3.10/site-packages/vllm/worker/model_runner.py", line 256, in load_model
[rank0]:     self.model = get_model(model_config=self.model_config,
[rank0]:   File "/home/testvllm/.local/lib/python3.10/site-packages/vllm/model_executor/model_loader/__init__.py", line 21, in get_model
[rank0]:     return loader.load_model(model_config=model_config,
[rank0]:   File "/home/testvllm/.local/lib/python3.10/site-packages/vllm/model_executor/model_loader/loader.py", line 267, in load_model
[rank0]:     model = _initialize_model(model_config, self.load_config,
[rank0]:   File "/home/testvllm/.local/lib/python3.10/site-packages/vllm/model_executor/model_loader/loader.py", line 104, in _initialize_model
[rank0]:     return model_class(config=model_config.hf_config,
[rank0]:   File "/home/testvllm/.local/lib/python3.10/site-packages/vllm/model_executor/models/gemma2.py", line 323, in __init__
[rank0]:     self.model = Gemma2Model(config, cache_config, quant_config)
[rank0]:   File "/home/testvllm/.local/lib/python3.10/site-packages/vllm/model_executor/models/gemma2.py", line 251, in __init__
[rank0]:     self.layers = nn.ModuleList([
[rank0]:   File "/home/testvllm/.local/lib/python3.10/site-packages/vllm/model_executor/models/gemma2.py", line 252, in <listcomp>
[rank0]:     Gemma2DecoderLayer(layer_idx, config, cache_config, quant_config)
[rank0]:   File "/home/testvllm/.local/lib/python3.10/site-packages/vllm/model_executor/models/gemma2.py", line 178, in __init__
[rank0]:     self.self_attn = Gemma2Attention(
[rank0]:   File "/home/testvllm/.local/lib/python3.10/site-packages/vllm/model_executor/models/gemma2.py", line 115, in __init__
[rank0]:     self.qkv_proj = QKVParallelLinear(
[rank0]:   File "/home/testvllm/.local/lib/python3.10/site-packages/vllm/model_executor/layers/linear.py", line 517, in __init__
[rank0]:     super().__init__(input_size=input_size,
[rank0]:   File "/home/testvllm/.local/lib/python3.10/site-packages/vllm/model_executor/layers/linear.py", line 244, in __init__
[rank0]:   File "/home/testvllm/.local/lib/python3.10/site-packages/vllm/model_executor/layers/linear.py", line 244, in __init__
[rank0]:     super().__init__(input_size, output_size, skip_bias_add, params_dtype,
[rank0]:   File "/home/testvllm/.local/lib/python3.10/site-packages/vllm/model_executor/layers/linear.py", line 158, in __init__
[rank0]:     self.quant_method = quant_config.get_quant_method(self)
[rank0]:   File "/home/testvllm/.local/lib/python3.10/site-packages/vllm/model_executor/layers/quantization/fp8.py", line 74, in get_quant_method
[rank0]:     return Fp8LinearMethod(self)
[rank0]:   File "/home/testvllm/.local/lib/python3.10/site-packages/vllm/model_executor/layers/quantization/fp8.py", line 105, in __init__
[rank0]:     self.cutlass_fp8_supported = cutlass_fp8_supported()
[rank0]:   File "/home/testvllm/.local/lib/python3.10/site-packages/vllm/model_executor/layers/quantization/utils/w8a8_utils.py", line 15, in cutlass_fp8_supported
[rank0]:     return ops.cutlass_scaled_mm_supports_fp8(capability)
[rank0]:   File "/home/testvllm/.local/lib/python3.10/site-packages/vllm/_custom_ops.py", line 220, in cutlass_scaled_mm_supports_fp8
[rank0]:     return torch.ops._C.cutlass_scaled_mm_supports_fp8(cuda_device_capability)
[rank0]:   File "/home/testvllm/.local/lib/python3.10/site-packages/torch/_ops.py", line 921, in __getattr__
[rank0]:     raise AttributeError(
[rank0]: AttributeError: '_OpNamespace' '_C' object has no attribute 'cutlass_scaled_mm_supports_fp8'

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions