-
-
Notifications
You must be signed in to change notification settings - Fork 10.6k
Closed
Labels
usageHow to use vllmHow to use vllm
Description
Your current environment
Collecting environment information...
PyTorch version: 2.3.1+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.30.1
Libc version: glibc-2.35
Python version: 3.11.0rc1 (main, Aug 12 2022, 10:02:14) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.0-1064-aws-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA A10G
GPU 1: NVIDIA A10G
GPU 2: NVIDIA A10G
GPU 3: NVIDIA A10G
Nvidia driver version: 535.161.07
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.7
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.7
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 48 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 48
On-line CPU(s) list: 0-47
Vendor ID: AuthenticAMD
Model name: AMD EPYC 7R32
CPU family: 23
Model: 49
Thread(s) per core: 2
Core(s) per socket: 24
Socket(s): 1
Stepping: 0
BogoMIPS: 5599.74
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf tsc_known_freq pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch topoext ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru wbnoinvd arat npt nrip_save rdpid
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 768 KiB (24 instances)
L1i cache: 768 KiB (24 instances)
L2 cache: 12 MiB (24 instances)
L3 cache: 96 MiB (6 instances)
NUMA node(s): 1
NUMA node0 CPU(s): 0-47
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Retbleed: Mitigation; untrained return thunk; SMT enabled with STIBP protection
Vulnerability Spec rstack overflow: Mitigation; safe RET
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines; IBPB conditional; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] mypy-extensions==0.4.3
[pip3] numpy==1.23.5
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] optree==0.12.1
[pip3] sentence-transformers==2.7.0
[pip3] torch==2.3.1+cu121
[pip3] torcheval==0.0.7
[pip3] torchvision==0.18.1+cu121
[pip3] transformers==4.43.3
[pip3] triton==2.3.1
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.5.3.post1
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X PHB PHB PHB 0-47 0 N/A
GPU1 PHB X PHB PHB 0-47 0 N/A
GPU2 PHB PHB X PHB 0-47 0 N/A
GPU3 PHB PHB PHB X 0-47 0 N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
How would you like to use vllm
I am trying to run a multi node server of llama 3.1 405B across 16 nodes each having 4 A10 GPUs on databricks. I first start a ray instance and then try to run a server with tp size 64.
the driver is also of the same type g5.12x (4xA10)
Getting this error:
INFO 07-30 09:23:58 api_server.py:219] vLLM API server version 0.5.3.post1
INFO 07-30 09:23:58 api_server.py:220] args: Namespace(model_tag='/dbfs/mnt/dna_pai_tvc/nbilla/llm_model_dump/meta-llama/Meta-Llama-3.1-405B-Instruct', host=None, port=8000, uvicorn_log_level='info', allow_credentials=False, allowed_origins=['*'], allowed_methods=['*'], allowed_headers=['*'], api_key=None, lora_modules=None, prompt_adapters=None, chat_template=None, response_role='assistant', ssl_keyfile=None, ssl_certfile=None, ssl_ca_certs=None, ssl_cert_reqs=0, root_path=None, middleware=[], model='/dbfs/mnt/dna_pai_tvc/nbilla/llm_model_dump/meta-llama/Meta-Llama-3.1-405B-Instruct', tokenizer=None, skip_tokenizer_init=False, revision=None, code_revision=None, tokenizer_revision=None, tokenizer_mode='auto', trust_remote_code=False, download_dir=None, load_format='auto', dtype='auto', kv_cache_dtype='auto', quantization_param_path=None, max_model_len=8096, guided_decoding_backend='outlines', distributed_executor_backend=None, worker_use_ray=False, pipeline_parallel_size=1, tensor_parallel_size=64, max_parallel_loading_workers=None, ray_workers_use_nsight=False, block_size=16, enable_prefix_caching=False, disable_sliding_window=False, use_v2_block_manager=False, num_lookahead_slots=0, seed=0, swap_space=1, cpu_offload_gb=0, gpu_memory_utilization=0.9, num_gpu_blocks_override=None, max_num_batched_tokens=None, max_num_seqs=256, max_logprobs=20, disable_log_stats=False, quantization=None, rope_scaling=None, rope_theta=None, enforce_eager=False, max_context_len_to_capture=None, max_seq_len_to_capture=8192, disable_custom_all_reduce=False, tokenizer_pool_size=0, tokenizer_pool_type='ray', tokenizer_pool_extra_config=None, enable_lora=False, max_loras=1, max_lora_rank=16, lora_extra_vocab_size=256, lora_dtype='auto', long_lora_scaling_factors=None, max_cpu_loras=None, fully_sharded_loras=False, enable_prompt_adapter=False, max_prompt_adapters=1, max_prompt_adapter_token=0, device='auto', scheduler_delay_factor=0.0, enable_chunked_prefill=None, speculative_model=None, num_speculative_tokens=None, speculative_draft_tensor_parallel_size=None, speculative_max_model_len=None, speculative_disable_by_batch_size=None, ngram_prompt_lookup_max=None, ngram_prompt_lookup_min=None, spec_decoding_acceptance_method='rejection_sampler', typical_acceptance_sampler_posterior_threshold=None, typical_acceptance_sampler_posterior_alpha=None, disable_logprobs_during_spec_decoding=None, model_loader_extra_config=None, ignore_patterns=[], preemption_mode=None, served_model_name=['llama-3.1-405b-instruct'], qlora_adapter_name_or_path=None, otlp_traces_endpoint=None, engine_use_ray=False, disable_log_requests=False, max_log_len=None, dispatch_function=<function serve at 0x7f499e698ea0>)
INFO 07-30 09:23:58 config.py:715] Defaulting to use ray for distributed inference
2024-07-30 09:23:58,467 INFO worker.py:1429 -- Using address 100.70.57.94:9322 set in the environment variable RAY_ADDRESS
2024-07-30 09:23:58,468 INFO worker.py:1564 -- Connecting to existing Ray cluster at address: 100.70.57.94:9322...
2024-07-30 09:23:58,475 INFO worker.py:1740 -- Connected to Ray cluster. View the dashboard at 100.70.57.94:9106
INFO 07-30 09:23:59 llm_engine.py:176] Initializing an LLM engine (v0.5.3.post1) with config: model='/dbfs/mnt/dna_pai_tvc/nbilla/llm_model_dump/meta-llama/Meta-Llama-3.1-405B-Instruct', speculative_config=None, tokenizer='/dbfs/mnt/dna_pai_tvc/nbilla/llm_model_dump/meta-llama/Meta-Llama-3.1-405B-Instruct', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, rope_scaling=None, rope_theta=None, tokenizer_revision=None, trust_remote_code=False, dtype=torch.bfloat16, max_seq_len=8096, download_dir=None, load_format=LoadFormat.AUTO, tensor_parallel_size=64, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=None, enforce_eager=False, kv_cache_dtype=auto, quantization_param_path=None, device_config=cuda, decoding_config=DecodingConfig(guided_decoding_backend='outlines'), observability_config=ObservabilityConfig(otlp_traces_endpoint=None), seed=0, served_model_name=llama-3.1-405b-instruct, use_v2_block_manager=False, enable_prefix_caching=False)
Traceback (most recent call last):
File "/local_disk0/.ephemeral_nfs/cluster_libraries/python/bin/vllm", line 8, in <module>
sys.exit(main())
^^^^^^
File "/local_disk0/.ephemeral_nfs/cluster_libraries/python/lib/python3.11/site-packages/vllm/scripts.py", line 148, in main
args.dispatch_function(args)
File "/local_disk0/.ephemeral_nfs/cluster_libraries/python/lib/python3.11/site-packages/vllm/scripts.py", line 28, in serve
run_server(args)
File "/local_disk0/.ephemeral_nfs/cluster_libraries/python/lib/python3.11/site-packages/vllm/entrypoints/openai/api_server.py", line 231, in run_server
if llm_engine is not None else AsyncLLMEngine.from_engine_args(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/local_disk0/.ephemeral_nfs/cluster_libraries/python/lib/python3.11/site-packages/vllm/engine/async_llm_engine.py", line 466, in from_engine_args
engine = cls(
^^^^
File "/local_disk0/.ephemeral_nfs/cluster_libraries/python/lib/python3.11/site-packages/vllm/engine/async_llm_engine.py", line 380, in __init__
self.engine = self._init_engine(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/local_disk0/.ephemeral_nfs/cluster_libraries/python/lib/python3.11/site-packages/vllm/engine/async_llm_engine.py", line 547, in _init_engine
return engine_class(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/local_disk0/.ephemeral_nfs/cluster_libraries/python/lib/python3.11/site-packages/vllm/engine/llm_engine.py", line 251, in __init__
self.model_executor = executor_class(
^^^^^^^^^^^^^^^
File "/local_disk0/.ephemeral_nfs/cluster_libraries/python/lib/python3.11/site-packages/vllm/executor/ray_gpu_executor.py", line 406, in __init__
super().__init__(*args, **kwargs)
File "/local_disk0/.ephemeral_nfs/cluster_libraries/python/lib/python3.11/site-packages/vllm/executor/distributed_gpu_executor.py", line 25, in __init__
super().__init__(*args, **kwargs)
File "/local_disk0/.ephemeral_nfs/cluster_libraries/python/lib/python3.11/site-packages/vllm/executor/executor_base.py", line 47, in __init__
self._init_executor()
File "/local_disk0/.ephemeral_nfs/cluster_libraries/python/lib/python3.11/site-packages/vllm/executor/ray_gpu_executor.py", line 61, in _init_executor
self._init_workers_ray(placement_group)
File "/local_disk0/.ephemeral_nfs/cluster_libraries/python/lib/python3.11/site-packages/vllm/executor/ray_gpu_executor.py", line 148, in _init_workers_ray
raise ValueError(
ValueError: Ray does not allocate any GPUs on the driver node. Consider adjusting the Ray placement group or running the driver on a GPU node.
Exception ignored in: <function RayGPUExecutorAsync.__del__ at 0x7f4987fb7ec0>
Traceback (most recent call last):
File "/local_disk0/.ephemeral_nfs/cluster_libraries/python/lib/python3.11/site-packages/vllm/executor/ray_gpu_executor.py", line 473, in __del__
if self.forward_dag is not None:
^^^^^^^^^^^^^^^^
AttributeError: 'RayGPUExecutorAsync' object has no attribute 'forward_dag'
Semihal
Metadata
Metadata
Assignees
Labels
usageHow to use vllmHow to use vllm