-
-
Notifications
You must be signed in to change notification settings - Fork 10.6k
Closed as not planned
Closed as not planned
Copy link
Labels
bugSomething isn't workingSomething isn't workingstaleOver 90 days of inactivityOver 90 days of inactivity
Description
Your current environment
The output of `python collect_env.py`
Model name: Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz
CPU family: 6
Model: 106
Thread(s) per core: 2
Core(s) per socket: 32
Socket(s): 2
Stepping: 6
BogoMIPS: 5799.98
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves wbnoinvd ida arat avx512vbmi pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq rdpid md_clear flush_l1d arch_capabilities
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 3 MiB (64 instances)
L1i cache: 2 MiB (64 instances)
L2 cache: 80 MiB (64 instances)
L3 cache: 108 MiB (2 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-31,64-95
NUMA node1 CPU(s): 32-63,96-127
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT Host state unknown
Vulnerability Retbleed: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] numpy==1.25.2
[pip3] nvidia-cublas-cu12==12.1.3.1
[pip3] nvidia-cuda-cupti-cu12==12.1.105
[pip3] nvidia-cuda-nvrtc-cu12==12.1.105
[pip3] nvidia-cuda-runtime-cu12==12.1.105
[pip3] nvidia-cudnn-cu12==8.9.2.26
[pip3] nvidia-cufft-cu12==11.0.2.54
[pip3] nvidia-curand-cu12==10.3.2.106
[pip3] nvidia-cusolver-cu12==11.4.5.107
[pip3] nvidia-cusparse-cu12==12.1.0.106
[pip3] nvidia-nccl-cu12==2.18.1
[pip3] nvidia-nvjitlink-cu12==12.6.68
[pip3] nvidia-nvtx-cu12==12.1.105
[pip3] pyzmq==26.2.0
[pip3] torch==2.1.2
[pip3] torch-neuronx==2.1.2.2.3.0
[pip3] torch-xla==2.1.4
[pip3] torchvision==0.16.2
[pip3] transformers==4.44.2
[pip3] transformers-neuronx==0.12.313
[pip3] triton==3.0.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: (0, 'instance-type: trn1.32xlarge\ninstance-id: i-0046fea840efb721c\n+--------+--------+--------+---------------+---------+\n| NEURON | NEURON | NEURON | CONNECTED | PCI |\n| DEVICE | CORES | MEMORY | DEVICES | BDF |\n+--------+--------+--------+---------------+---------+\n| 0 | 2 | 32 GB | 12, 3, 4, 1 | 10:1c.0 |\n| 1 | 2 | 32 GB | 13, 0, 5, 2 | 10:1d.0 |\n| 2 | 2 | 32 GB | 14, 1, 6, 3 | a0:1c.0 |\n| 3 | 2 | 32 GB | 15, 2, 7, 0 | a0:1d.0 |\n| 4 | 2 | 32 GB | 0, 7, 8, 5 | 20:1b.0 |\n| 5 | 2 | 32 GB | 1, 4, 9, 6 | 20:1c.0 |\n| 6 | 2 | 32 GB | 2, 5, 10, 7 | 90:1b.0 |\n| 7 | 2 | 32 GB | 3, 6, 11, 4 | 90:1c.0 |\n| 8 | 2 | 32 GB | 4, 11, 12, 9 | 20:1d.0 |\n| 9 | 2 | 32 GB | 5, 8, 13, 10 | 20:1e.0 |\n| 10 | 2 | 32 GB | 6, 9, 14, 11 | 90:1d.0 |\n| 11 | 2 | 32 GB | 7, 10, 15, 8 | 90:1e.0 |\n| 12 | 2 | 32 GB | 8, 15, 0, 13 | 10:1e.0 |\n| 13 | 2 | 32 GB | 9, 12, 1, 14 | 10:1b.0 |\n| 14 | 2 | 32 GB | 10, 13, 2, 15 | a0:1e.0 |\n| 15 | 2 | 32 GB | 11, 14, 3, 12 | a0:1b.0 |\n+--------+--------+--------+---------------+---------+', '')
vLLM Version: N/A
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
Could not collect
Model Input Dumps
No response
🐛 Describe the bug
Recent change as part of this commit has used new Python Custom Op High level APIs which are only supported with torch > 2.4. Ref1
Neuron currently supports upto pytorch 2.1 so its leading to errors when following the installation steps here - https://docs.vllm.ai/en/latest/getting_started/neuron-installation.html
and running the offline inference script - https://github.com/vllm-project/vllm/blob/main/examples/offline_inference_neuron.py
with following error
Traceback (most recent call last):
File "/home/Vllm_Upstream/bug_report/vllm/examples/offline_inference_neuron.py", line 3, in <module>
from vllm import LLM, SamplingParams
File "/home/Vllm_Upstream/bug_report/vllm/vllm/__init__.py", line 3, in <module>
from vllm.engine.arg_utils import AsyncEngineArgs, EngineArgs
File "/home/Vllm_Upstream/bug_report/vllm/vllm/engine/arg_utils.py", line 11, in <module>
from vllm.config import (CacheConfig, ConfigFormat, DecodingConfig,
File "/home/Vllm_Upstream/bug_report/vllm/vllm/config.py", line 12, in <module>
from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS
File "/home/Vllm_Upstream/bug_report/vllm/vllm/model_executor/__init__.py", line 1, in <module>
from vllm.model_executor.parameter import (BasevLLMParameter,
File "/home/Vllm_Upstream/bug_report/vllm/vllm/model_executor/parameter.py", line 7, in <module>
from vllm.distributed import get_tensor_model_parallel_rank
File "/home/Vllm_Upstream/bug_report/vllm/vllm/distributed/__init__.py", line 1, in <module>
from .communication_op import *
File "/home/Vllm_Upstream/bug_report/vllm/vllm/distributed/communication_op.py", line 6, in <module>
from .parallel_state import get_tp_group
File "/home/Vllm_Upstream/bug_report/vllm/vllm/distributed/parallel_state.py", line 98, in <module>
@torch.library.custom_op("vllm::inplace_all_reduce", mutates_args=["tensor"])
AttributeError: module 'torch.library' has no attribute 'custom_op'
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't workingstaleOver 90 days of inactivityOver 90 days of inactivity