-
-
Notifications
You must be signed in to change notification settings - Fork 10.6k
Description
Your current environment
The output of `python collect_env.py`
PyTorch version: 2.4.0+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.30.2
Libc version: glibc-2.35
Python version: 3.10.14 (main, May 6 2024, 19:42:50) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.0-113-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.4.131
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA GeForce RTX 4090
GPU 1: NVIDIA GeForce RTX 4090
GPU 2: NVIDIA GeForce RTX 4090
GPU 3: NVIDIA GeForce RTX 4090
GPU 4: NVIDIA GeForce RTX 4090
GPU 5: NVIDIA GeForce RTX 4090
GPU 6: NVIDIA GeForce RTX 4090
GPU 7: NVIDIA GeForce RTX 4090
Nvidia driver version: 550.90.07
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 48 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 124
On-line CPU(s) list: 0-123
Vendor ID: AuthenticAMD
Model name: AMD EPYC 7542 32-Core Processor
CPU family: 23
Model: 49
Thread(s) per core: 2
Core(s) per socket: 31
Socket(s): 2
Stepping: 0
BogoMIPS: 5799.99
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm rep_good nopl cpuid extd_apicid amd_dcm tsc_known_freq pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd ibrs ibpb stibp vmmcall fsgsbase tsc_adjust bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr wbnoinvd virt_ssbd arat umip rdpid arch_capabilities
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 3.9 MiB (62 instances)
L1i cache: 3.9 MiB (62 instances)
L2 cache: 31 MiB (62 instances)
L3 cache: 256 MiB (16 instances)
NUMA node(s): 8
NUMA node0 CPU(s): 0-7,64-71
NUMA node1 CPU(s): 8-15,72-79
NUMA node2 CPU(s): 16-23,80-87
NUMA node3 CPU(s): 24-31,88-95
NUMA node4 CPU(s): 32-39,96-103
NUMA node5 CPU(s): 40-47,104-111
NUMA node6 CPU(s): 48-55,112-119
NUMA node7 CPU(s): 56-63,120-123
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Retbleed: Mitigation; untrained return thunk; SMT enabled with STIBP protection
Vulnerability Spec rstack overflow: Mitigation; safe RET
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines; IBPB conditional; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] flashinfer==0.1.5+cu124torch2.4
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.1.3.1
[pip3] nvidia-cuda-cupti-cu12==12.1.105
[pip3] nvidia-cuda-nvrtc-cu12==12.1.105
[pip3] nvidia-cuda-runtime-cu12==12.1.105
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.0.2.54
[pip3] nvidia-curand-cu12==10.3.2.106
[pip3] nvidia-cusolver-cu12==11.4.5.107
[pip3] nvidia-cusparse-cu12==12.1.0.106
[pip3] nvidia-ml-py==12.535.161
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] nvidia-nvjitlink-cu12==12.6.20
[pip3] nvidia-nvtx-cu12==12.1.105
[pip3] pyzmq==26.1.1
[pip3] torch==2.4.0
[pip3] torchvision==0.19.0
[pip3] transformers==4.43.4
[pip3] triton==3.0.0
[conda] flashinfer 0.1.5+cu124torch2.4 pypi_0 pypi
[conda] numpy 1.26.4 pypi_0 pypi
[conda] nvidia-cublas-cu12 12.1.3.1 pypi_0 pypi
[conda] nvidia-cuda-cupti-cu12 12.1.105 pypi_0 pypi
[conda] nvidia-cuda-nvrtc-cu12 12.1.105 pypi_0 pypi
[conda] nvidia-cuda-runtime-cu12 12.1.105 pypi_0 pypi
[conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi
[conda] nvidia-cufft-cu12 11.0.2.54 pypi_0 pypi
[conda] nvidia-curand-cu12 10.3.2.106 pypi_0 pypi
[conda] nvidia-cusolver-cu12 11.4.5.107 pypi_0 pypi
[conda] nvidia-cusparse-cu12 12.1.0.106 pypi_0 pypi
[conda] nvidia-ml-py 12.535.161 pypi_0 pypi
[conda] nvidia-nccl-cu12 2.20.5 pypi_0 pypi
[conda] nvidia-nvjitlink-cu12 12.6.20 pypi_0 pypi
[conda] nvidia-nvtx-cu12 12.1.105 pypi_0 pypi
[conda] pyzmq 26.1.1 pypi_0 pypi
[conda] torch 2.4.0 pypi_0 pypi
[conda] torchvision 0.19.0 pypi_0 pypi
[conda] transformers 4.43.4 pypi_0 pypi
[conda] triton 3.0.0 pypi_0 pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.6.0@32e7db25365415841ebc7c4215851743fbb1bad1
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X PHB PHB PHB PHB PHB PHB PHB 0-123 0-7 N/A
GPU1 PHB X PHB PHB PHB PHB PHB PHB 0-123 0-7 N/A
GPU2 PHB PHB X PHB PHB PHB PHB PHB 0-123 0-7 N/A
GPU3 PHB PHB PHB X PHB PHB PHB PHB 0-123 0-7 N/A
GPU4 PHB PHB PHB PHB X PHB PHB PHB 0-123 0-7 N/A
GPU5 PHB PHB PHB PHB PHB X PHB PHB 0-123 0-7 N/A
GPU6 PHB PHB PHB PHB PHB PHB X PHB 0-123 0-7 N/A
GPU7 PHB PHB PHB PHB PHB PHB PHB X 0-123 0-7 N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
Model Input Dumps
No response
🐛 Describe the bug
I can successfully deploy llama3-8b-instruct with EAGLE. But there is a problem when deploying qwen2-7b-instruct with EAGLE.
I have converted the EAGLE-Qwen2-7B-Instruct model according to[vllm/model_executor/models/eagle.py:L126](
vllm/vllm/model_executor/models/eagle.py
Line 126 in 8fae5ed
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): |
I tried the python code below
llm = LLM(
model="/models/Qwen2-7B-Instruct",
dtype='bfloat16',
tensor_parallel_size=4,
speculative_model="/models/EAGLE-Qwen2-7B-Instruct-vllm",
speculative_draft_tensor_parallel_size=1,
num_speculative_tokens=1,
use_v2_block_manager=True,
)
I encountered another error below:
AssertionError: Attempted to load weight (torch.Size([3584])) into parameter (torch.Size([3584, 7168]))
I lookup to the code [vllm/model_executor/models/eagle.py:L139](
vllm/vllm/model_executor/models/eagle.py
Line 139 in 8fae5ed
elif name.startswith("fc.weight"): |
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
...
elif name.startswith("fc."):
weight_loader = getattr(self.fc.weight, "weight_loader",
default_weight_loader)
weight_loader(self.fc.weight, loaded_weight)
...
I think you only consider the name varieble startswith 'fc.' can only be 'fc.weight', but the fc layer of eagle-qwen2 has bias attribute, which means the name varieble can be 'fc.bias'.
I hope you can fix this in the upcoming upgrade!
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.