-
-
Notifications
You must be signed in to change notification settings - Fork 10.5k
Closed
Labels
bugSomething isn't workingSomething isn't working
Description
Your current environment
The output of `python collect_env.py`
--2024-09-26 15:08:57-- https://github.com/raw/vllm-project/vllm/main/collect_env.py
Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.110.133, ...
Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 25389 (25K) [text/plain]
Saving to: ‘collect_env.py’
collect_env.py 100%[===================>] 24.79K --.-KB/s in 0s
2024-09-26 15:08:58 (94.2 MB/s) - ‘collect_env.py’ saved [25389/25389]
Collecting environment information...
2024-09-26 15:09:06.936526: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:485] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
2024-09-26 15:09:07.195978: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:8454] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
2024-09-26 15:09:07.266656: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1452] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
2024-09-26 15:09:07.688307: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2024-09-26 15:09:09.928315: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
PyTorch version: 2.4.0+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.3 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: 14.0.0-1ubuntu1.1
CMake version: version 3.30.3
Libc version: glibc-2.35
Python version: 3.10.12 (main, Sep 11 2024, 15:47:36) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-6.1.85+-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.2.140
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: Tesla T4
Nvidia driver version: 535.104.05
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.6
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 2
On-line CPU(s) list: 0,1
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R) CPU @ 2.20GHz
CPU family: 6
Model: 79
Thread(s) per core: 2
Core(s) per socket: 1
Socket(s): 1
Stepping: 0
BogoMIPS: 4399.99
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm rdseed adx smap xsaveopt arat md_clear arch_capabilities
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 32 KiB (1 instance)
L1i cache: 32 KiB (1 instance)
L2 cache: 256 KiB (1 instance)
L3 cache: 55 MiB (1 instance)
NUMA node(s): 1
NUMA node0 CPU(s): 0,1
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Mitigation; PTE Inversion
Vulnerability Mds: Vulnerable; SMT Host state unknown
Vulnerability Meltdown: Vulnerable
Vulnerability Mmio stale data: Vulnerable
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Vulnerable
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Vulnerable
Vulnerability Spectre v1: Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers
Vulnerability Spectre v2: Vulnerable; IBPB: disabled; STIBP: disabled; PBRSB-eIBRS: Not affected; BHI: Vulnerable (Syscall hardening enabled)
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Vulnerable
Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.1.3.1
[pip3] nvidia-cuda-cupti-cu12==12.1.105
[pip3] nvidia-cuda-nvcc-cu12==12.6.68
[pip3] nvidia-cuda-nvrtc-cu12==12.1.105
[pip3] nvidia-cuda-runtime-cu12==12.1.105
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.0.2.54
[pip3] nvidia-curand-cu12==10.3.2.106
[pip3] nvidia-cusolver-cu12==11.4.5.107
[pip3] nvidia-cusparse-cu12==12.1.0.106
[pip3] nvidia-ml-py==12.560.30
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] nvidia-nvjitlink-cu12==12.6.68
[pip3] nvidia-nvtx-cu12==12.1.105
[pip3] optree==0.12.1
[pip3] pyzmq==24.0.1
[pip3] torch==2.4.0
[pip3] torchaudio==2.4.1+cu121
[pip3] torchsummary==1.5.1
[pip3] torchvision==0.19.0
[pip3] transformers==4.45.0
[pip3] triton==3.0.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: N/A
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X 0-1 N/A N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
Model Input Dumps
No response
🐛 Describe the bug
Error:
KeyError Traceback (most recent call last)
[<ipython-input-41-4c7e309514ca>](https://localhost:8080/#) in <cell line: 16>()
14
15 # Create an LLM.
---> 16 llm = LLM(
17 model="meta-llama/Llama-3.2-3B-Instruct",
18 tokenizer="meta-llama/Llama-3.2-3B-Instruct",
4 frames
[/usr/local/lib/python3.10/dist-packages/vllm/entrypoints/llm.py](https://localhost:8080/#) in __init__(self, model, tokenizer, tokenizer_mode, trust_remote_code, tensor_parallel_size, dtype, quantization, revision, tokenizer_revision, seed, gpu_memory_utilization, swap_space, **kwargs)
91 use `float16` instead.
92 quantization: The method used to quantize the model weights. Currently,
---> 93 we support "awq", "gptq", and "fp8" (experimental).
94 If None, we first check the `quantization_config` attribute in the
95 model config file. If that is None, we assume the model weights are
[/usr/local/lib/python3.10/dist-packages/vllm/engine/llm_engine.py](https://localhost:8080/#) in from_engine_args(cls, engine_args)
238 "decoding_config=%r, observability_config=%r, "
239 "seed=%d, served_model_name=%s, use_v2_block_manager=%s, "
--> 240 "num_scheduler_steps=%d, multi_step_stream_outputs=%s, "
241 "enable_prefix_caching=%s, use_async_output_proc=%s, "
242 "use_cached_outputs=%s, mm_processor_kwargs=%s)",
[/usr/local/lib/python3.10/dist-packages/vllm/engine/arg_utils.py](https://localhost:8080/#) in create_engine_configs(self)
196 '--tokenizer',
197 type=nullable_str,
--> 198 default=EngineArgs.tokenizer,
199 help='Name or path of the huggingface tokenizer to use. '
200 'If unspecified, model name or path will be used.')
[/usr/local/lib/python3.10/dist-packages/vllm/config.py](https://localhost:8080/#) in __init__(self, model, tokenizer, tokenizer_mode, trust_remote_code, download_dir, load_format, dtype, seed, revision, tokenizer_revision, max_model_len, quantization)
91 quantization_param_path: Path to JSON file containing scaling factors.
92 Used to load KV cache scaling factors into the model when KV cache
---> 93 type is FP8_E4M3 on ROCm (AMD GPU). In the future these will also
94 be used to load activation and weight scaling factors when the
95 model dtype is FP8_E4M3 on ROCm.
[/usr/local/lib/python3.10/dist-packages/vllm/config.py](https://localhost:8080/#) in _get_and_verify_max_len(hf_config, max_model_len)
491 return self.hf_config.num_attention_heads
492 if self.hf_config.model_type == "dbrx":
--> 493 return getattr(self.hf_config.attn_config, "kv_n_heads",
494 self.hf_config.num_attention_heads)
495
KeyError: 'type'
Reproduction (T4 on Colab):
!pip install vllm transformers -qU
import os
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
os.environ["HF_TOKEN"]=input()
from vllm import LLM, SamplingParams
import torch
# Sample prompts.
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# Create a sampling params object.
sampling_params = SamplingParams(temperature=0)
# Create an LLM.
llm = LLM(
model="meta-llama/Llama-3.2-3B-Instruct",
# trust_remote_code=True,
# dtype="float16",
# rope_scaling={"type": "extended", "factor": 8.0},
)
# Generate texts from the prompts. The output is a list of RequestOutput objects
# that contain the prompt, generated text, and other information.
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
for output in outputs:
prompt = output.prompt
answer = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {answer!r}")
There seem to be quite a few different errors with different models, like google/gemma-2-2b-it
which gives:
ImportError Traceback (most recent call last)
[<ipython-input-43-78ec61c78513>](https://localhost:8080/#) in <cell line: 16>()
14
15 # Create an LLM.
---> 16 llm = LLM(
17 # model="meta-llama/Llama-3.2-3B-Instruct",
18 model="google/gemma-2-2b-it",
4 frames
[/usr/local/lib/python3.10/dist-packages/vllm/worker/worker.py](https://localhost:8080/#) in <module>
8
9 import vllm.envs as envs
---> 10 from vllm.config import (CacheConfig, DeviceConfig, LoadConfig, LoRAConfig,
11 ModelConfig, ObservabilityConfig, ParallelConfig,
12 PromptAdapterConfig, SchedulerConfig,
ImportError: cannot import name 'DeviceConfig' from 'vllm.config' (/usr/local/lib/python3.10/dist-packages/vllm/config.py)
---------------------------------------------------------------------------
NOTE: If your import is failing due to a missing package, you can
manually install dependencies using either !pip or !apt.
To view examples of installing some common dependencies, click the
"Open Examples" button below.
or microsoft/Phi-3-mini-128k-instruct
gives:
AssertionError Traceback (most recent call last)
[<ipython-input-44-d902b9f3a8ff>](https://localhost:8080/#) in <cell line: 16>()
14
15 # Create an LLM.
---> 16 llm = LLM(
17 # model="meta-llama/Llama-3.2-3B-Instruct",
18 model="microsoft/Phi-3-mini-128k-instruct",
4 frames
[/usr/local/lib/python3.10/dist-packages/vllm/entrypoints/llm.py](https://localhost:8080/#) in __init__(self, model, tokenizer, tokenizer_mode, trust_remote_code, tensor_parallel_size, dtype, quantization, revision, tokenizer_revision, seed, gpu_memory_utilization, swap_space, **kwargs)
91 use `float16` instead.
92 quantization: The method used to quantize the model weights. Currently,
---> 93 we support "awq", "gptq", and "fp8" (experimental).
94 If None, we first check the `quantization_config` attribute in the
95 model config file. If that is None, we assume the model weights are
[/usr/local/lib/python3.10/dist-packages/vllm/engine/llm_engine.py](https://localhost:8080/#) in from_engine_args(cls, engine_args)
238 "decoding_config=%r, observability_config=%r, "
239 "seed=%d, served_model_name=%s, use_v2_block_manager=%s, "
--> 240 "num_scheduler_steps=%d, multi_step_stream_outputs=%s, "
241 "enable_prefix_caching=%s, use_async_output_proc=%s, "
242 "use_cached_outputs=%s, mm_processor_kwargs=%s)",
[/usr/local/lib/python3.10/dist-packages/vllm/engine/arg_utils.py](https://localhost:8080/#) in create_engine_configs(self)
196 '--tokenizer',
197 type=nullable_str,
--> 198 default=EngineArgs.tokenizer,
199 help='Name or path of the huggingface tokenizer to use. '
200 'If unspecified, model name or path will be used.')
[/usr/local/lib/python3.10/dist-packages/vllm/config.py](https://localhost:8080/#) in __init__(self, model, tokenizer, tokenizer_mode, trust_remote_code, download_dir, load_format, dtype, seed, revision, tokenizer_revision, max_model_len, quantization)
91 quantization_param_path: Path to JSON file containing scaling factors.
92 Used to load KV cache scaling factors into the model when KV cache
---> 93 type is FP8_E4M3 on ROCm (AMD GPU). In the future these will also
94 be used to load activation and weight scaling factors when the
95 model dtype is FP8_E4M3 on ROCm.
[/usr/local/lib/python3.10/dist-packages/vllm/config.py](https://localhost:8080/#) in _get_and_verify_max_len(hf_config, max_model_len)
489 if "kv_n_heads" in self.hf_config.attn_config:
490 return self.hf_config.attn_config["kv_n_heads"]
--> 491 return self.hf_config.num_attention_heads
492 if self.hf_config.model_type == "dbrx":
493 return getattr(self.hf_config.attn_config, "kv_n_heads",
AssertionError:
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working