Skip to content

[Bug]: Llama with Lora is not starting #9207

@prashantgupta24

Description

@prashantgupta24

Your current environment

The output of `python collect_env.py`

Collecting environment information...
/workspace/my-vllm/lib64/python3.12/site-packages/transformers/utils/hub.py:128: FutureWarning: Using `TRANSFORMERS_CACHE` is deprecated and will be removed in v5 of Transformers. Use `HF_HOME` instead.
  warnings.warn(
PyTorch version: 2.4.0+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A

OS: Red Hat Enterprise Linux 9.4 (Plow) (x86_64)
GCC version: (GCC) 11.4.1 20231218 (Red Hat 11.4.1-3)
Clang version: Could not collect
CMake version: Could not collect
Libc version: glibc-2.34

Python version: 3.12.1 (main, Aug 23 2024, 00:00:00) [GCC 11.4.1 20231218 (Red Hat 11.4.1-3)] (64-bit runtime)
Python platform: Linux-4.18.0-372.46.1.el8_6.x86_64-x86_64-with-glibc2.34
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: NVIDIA A100-SXM4-80GB
Nvidia driver version: 535.104.12
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                    x86_64
CPU op-mode(s):                  32-bit, 64-bit
Address sizes:                   46 bits physical, 57 bits virtual
Byte Order:                      Little Endian
CPU(s):                          80
On-line CPU(s) list:             0-79
Vendor ID:                       GenuineIntel
Model name:                      Intel Xeon Processor (Icelake)
CPU family:                      6
Model:                           134
Thread(s) per core:              2
Core(s) per socket:              20
Socket(s):                       2
Stepping:                        0
BogoMIPS:                        5600.04
Flags:                           fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology cpuid tsc_known_freq pni pclmulqdq vmx ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves wbnoinvd arat avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq la57 rdpid fsrm md_clear arch_capabilities
Virtualization:                  VT-x
Hypervisor vendor:               KVM
Virtualization type:             full
L1d cache:                       2.5 MiB (80 instances)
L1i cache:                       2.5 MiB (80 instances)
L2 cache:                        160 MiB (40 instances)
L3 cache:                        32 MiB (2 instances)
NUMA node(s):                    2
NUMA node0 CPU(s):               0-39
NUMA node1 CPU(s):               40-79
Vulnerability Itlb multihit:     Not affected
Vulnerability L1tf:              Not affected
Vulnerability Mds:               Not affected
Vulnerability Meltdown:          Not affected
Vulnerability Mmio stale data:   Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Retbleed:          Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1:        Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:        Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds:             Not affected
Vulnerability Tsx async abort:   Not affected

Versions of relevant libraries:
[pip3] flashinfer==0.1.6+cu124torch2.4
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.1.3.1
[pip3] nvidia-cuda-cupti-cu12==12.1.105
[pip3] nvidia-cuda-nvrtc-cu12==12.1.105
[pip3] nvidia-cuda-runtime-cu12==12.1.105
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.0.2.54
[pip3] nvidia-curand-cu12==10.3.2.106
[pip3] nvidia-cusolver-cu12==11.4.5.107
[pip3] nvidia-cusparse-cu12==12.1.0.106
[pip3] nvidia-ml-py==12.560.30
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] nvidia-nvjitlink-cu12==12.6.77
[pip3] nvidia-nvtx-cu12==12.1.105
[pip3] pyzmq==26.2.0
[pip3] torch==2.4.0
[pip3] torchvision==0.19.0
[pip3] transformers==4.45.2
[pip3] triton==3.0.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.6.3.dev71+g6a5d85f4
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0	NIC0	CPU Affinity	NUMA Affinity	GPU NUMA ID
GPU0	 X 	SYS	40-79	1		N/A
NIC0	SYS	 X

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

NIC Legend:

  NIC0: mlx5_0



Model Input Dumps

No response

🐛 Describe the bug

vllm serve meta-llama/Llama-3.2-1B --enable-lora

Gives me

RuntimeError: The size of tensor a (2048) must match the size of tensor b (128512) at non-singleton dimension 1

Full stacktrace:

Process SpawnProcess-1:
Traceback (most recent call last):
  File "/workspace/my-vllm/lib64/python3.12/site-packages/vllm/worker/model_runner_base.py", line 116, in _wrapper
    return func(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^
  File "/workspace/my-vllm/lib64/python3.12/site-packages/vllm/worker/model_runner.py", line 1607, in execute_model
    self.set_active_loras(model_input.lora_requests,
  File "/workspace/my-vllm/lib64/python3.12/site-packages/vllm/worker/model_runner.py", line 1303, in set_active_loras
    self.lora_manager.set_active_adapters(lora_requests, lora_mapping)
  File "/workspace/my-vllm/lib64/python3.12/site-packages/vllm/lora/worker_manager.py", line 136, in set_active_adapters
    set_active_adapters_worker(requests, mapping, self._apply_adapters,
  File "/workspace/my-vllm/lib64/python3.12/site-packages/vllm/adapter_commons/utils.py", line 52, in set_active_adapters_worker
    apply_adapters_func(requests)
  File "/workspace/my-vllm/lib64/python3.12/site-packages/vllm/lora/worker_manager.py", line 195, in _apply_adapters
    self.add_adapter(lora)
  File "/workspace/my-vllm/lib64/python3.12/site-packages/vllm/lora/worker_manager.py", line 211, in add_adapter
    self._adapter_manager.activate_adapter(lora_request.lora_int_id)
  File "/workspace/my-vllm/lib64/python3.12/site-packages/vllm/lora/models.py", line 706, in activate_adapter
    result = super().activate_adapter(lora_id)
             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/workspace/my-vllm/lib64/python3.12/site-packages/vllm/lora/models.py", line 391, in activate_adapter
    module.set_lora(index, module_lora.lora_a, module_lora.lora_b,
  File "/workspace/my-vllm/lib64/python3.12/site-packages/vllm/lora/layers.py", line 1430, in set_lora
    0, :lora_a.shape[1], :lora_a.shape[0]].copy_(
                                           ^^^^^^
RuntimeError: The size of tensor a (2048) must match the size of tensor b (128512) at non-singleton dimension 1

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
  File "/usr/lib64/python3.12/multiprocessing/process.py", line 314, in _bootstrap
    self.run()
  File "/usr/lib64/python3.12/multiprocessing/process.py", line 108, in run
    self._target(*self._args, **self._kwargs)
  File "/workspace/my-vllm/lib64/python3.12/site-packages/vllm/engine/multiprocessing/engine.py", line 388, in run_mp_engine
    engine = MQLLMEngine.from_engine_args(engine_args=engine_args,
             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/workspace/my-vllm/lib64/python3.12/site-packages/vllm/engine/multiprocessing/engine.py", line 138, in from_engine_args
    return cls(
           ^^^^
  File "/workspace/my-vllm/lib64/python3.12/site-packages/vllm/engine/multiprocessing/engine.py", line 78, in __init__
    self.engine = LLMEngine(*args,
                  ^^^^^^^^^^^^^^^^
  File "/workspace/my-vllm/lib64/python3.12/site-packages/vllm/engine/llm_engine.py", line 349, in __init__
    self._initialize_kv_caches()
  File "/workspace/my-vllm/lib64/python3.12/site-packages/vllm/engine/llm_engine.py", line 484, in _initialize_kv_caches
    self.model_executor.determine_num_available_blocks())
    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/workspace/my-vllm/lib64/python3.12/site-packages/vllm/executor/gpu_executor.py", line 114, in determine_num_available_blocks
    return self.driver_worker.determine_num_available_blocks()
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/workspace/my-vllm/lib64/python3.12/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
    return func(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^
  File "/workspace/my-vllm/lib64/python3.12/site-packages/vllm/worker/worker.py", line 223, in determine_num_available_blocks
    self.model_runner.profile_run()
  File "/workspace/my-vllm/lib64/python3.12/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
    return func(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^
  File "/workspace/my-vllm/lib64/python3.12/site-packages/vllm/worker/model_runner.py", line 1290, in profile_run
    self.execute_model(model_input, kv_caches, intermediate_tensors)
  File "/workspace/my-vllm/lib64/python3.12/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
    return func(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^
  File "/workspace/my-vllm/lib64/python3.12/site-packages/vllm/worker/model_runner_base.py", line 152, in _wrapper
    raise type(err)(
RuntimeError: Error in model execution (input dumped to /tmp/err_execute_model_input_20241009-221633.pkl): The size of tensor a (2048) must match the size of tensor b (128512) at non-singleton dimension 1
Traceback (most recent call last):
  File "/workspace/my-vllm/bin/vllm", line 8, in <module>
    sys.exit(main())
             ^^^^^^
  File "/workspace/my-vllm/lib64/python3.12/site-packages/vllm/scripts.py", line 191, in main
    args.dispatch_function(args)
  File "/workspace/my-vllm/lib64/python3.12/site-packages/vllm/scripts.py", line 40, in serve
    uvloop.run(run_server(args))
  File "/workspace/my-vllm/lib64/python3.12/site-packages/uvloop/__init__.py", line 109, in run
    return __asyncio.run(
           ^^^^^^^^^^^^^^
  File "/usr/lib64/python3.12/asyncio/runners.py", line 194, in run
    return runner.run(main)
           ^^^^^^^^^^^^^^^^
  File "/usr/lib64/python3.12/asyncio/runners.py", line 118, in run
    return self._loop.run_until_complete(task)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "uvloop/loop.pyx", line 1517, in uvloop.loop.Loop.run_until_complete
  File "/workspace/my-vllm/lib64/python3.12/site-packages/uvloop/__init__.py", line 61, in wrapper
    return await main
           ^^^^^^^^^^
  File "/workspace/my-vllm/lib64/python3.12/site-packages/vllm/entrypoints/openai/api_server.py", line 548, in run_server
    async with build_async_engine_client(args) as engine_client:
  File "/usr/lib64/python3.12/contextlib.py", line 210, in __aenter__
    return await anext(self.gen)
           ^^^^^^^^^^^^^^^^^^^^^
  File "/workspace/my-vllm/lib64/python3.12/site-packages/vllm/entrypoints/openai/api_server.py", line 106, in build_async_engine_client
    async with build_async_engine_client_from_engine_args(
  File "/usr/lib64/python3.12/contextlib.py", line 210, in __aenter__
    return await anext(self.gen)
           ^^^^^^^^^^^^^^^^^^^^^
  File "/workspace/my-vllm/lib64/python3.12/site-packages/vllm/entrypoints/openai/api_server.py", line 193, in build_async_engine_client_from_engine_args
    raise RuntimeError(
RuntimeError: Engine process failed to start

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions