-
-
Notifications
You must be signed in to change notification settings - Fork 10.5k
Description
Your current environment
The output of `python collect_env.py`
PyTorch version: 2.4.0+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A
OS: Ubuntu 24.04.1 LTS (x86_64)
GCC version: (Ubuntu 13.2.0-23ubuntu4) 13.2.0
Clang version: Could not collect
CMake version: Could not collect
Libc version: glibc-2.39
Python version: 3.12.3 (main, Sep 11 2024, 14:17:37) [GCC 13.2.0] (64-bit runtime)
Is CUDA available: True
CUDA runtime version: 12.6.77
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA L40S
GPU 1: NVIDIA L40S
GPU 2: NVIDIA L40S
GPU 3: NVIDIA L40S
GPU 4: NVIDIA L40S
GPU 5: NVIDIA L40S
GPU 6: NVIDIA L40S
GPU 7: NVIDIA L40S
Nvidia driver version: 560.35.03
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 48 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 192
On-line CPU(s) list: 0-191
Vendor ID: AuthenticAMD
Model name: AMD EPYC 7R13 Processor
CPU family: 25
Model: 1
Thread(s) per core: 2
Core(s) per socket: 48
Socket(s): 2
Stepping: 1
BogoMIPS: 5299.99
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch topoext perfctr_core ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru wbnoinvd arat npt nrip_save vaes vpclmulqdq rdpid
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 3 MiB (96 instances)
L1i cache: 3 MiB (96 instances)
L2 cache: 48 MiB (96 instances)
L3 cache: 384 MiB (12 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-47,96-143
NUMA node1 CPU(s): 48-95,144-191
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Vulnerable: Safe RET, no microcode
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines; IBPB conditional; IBRS_FW; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.1.3.1
[pip3] nvidia-cuda-cupti-cu12==12.1.105
[pip3] nvidia-cuda-nvrtc-cu12==12.1.105
[pip3] nvidia-cuda-runtime-cu12==12.1.105
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.0.2.54
[pip3] nvidia-curand-cu12==10.3.2.106
[pip3] nvidia-cusolver-cu12==11.4.5.107
[pip3] nvidia-cusparse-cu12==12.1.0.106
[pip3] nvidia-ml-py==12.560.30
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] nvidia-nvjitlink-cu12==12.6.77
[pip3] nvidia-nvtx-cu12==12.1.105
[pip3] pyzmq==26.2.0
[pip3] torch==2.4.0
[pip3] torchvision==0.19.0
[pip3] transformers==4.45.2
[pip3] triton==3.0.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.6.1.dev238+ge2c6e0a82
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NODE NODE NODE SYS SYS SYS SYS 0-47,96-143 0 N/A
GPU1 NODE X NODE NODE SYS SYS SYS SYS 0-47,96-143 0 N/A
GPU2 NODE NODE X NODE SYS SYS SYS SYS 0-47,96-143 0 N/A
GPU3 NODE NODE NODE X SYS SYS SYS SYS 0-47,96-143 0 N/A
GPU4 SYS SYS SYS SYS X NODE NODE NODE 48-95,144-191 1 N/A
GPU5 SYS SYS SYS SYS NODE X NODE NODE 48-95,144-191 1 N/A
GPU6 SYS SYS SYS SYS NODE NODE X NODE 48-95,144-191 1 N/A
GPU7 SYS SYS SYS SYS NODE NODE NODE X 48-95,144-191 1 N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
Model Input Dumps
No response
🐛 Describe the bug
the command:
vllm serve MODELPATH --dtype auto --api-key TOKEN --tensor-parallel-size 4 --pipeline-parallel-size 2 --gpu-memory-utilization 0.90 --enable_prefix_caching --max_model_len 8192
returns the error:
INFO: Waiting for application startup.
INFO: Application startup complete.
ERROR: [Errno 98] error while attempting to bind on address ('0.0.0.0', 8000): address already in use
INFO: Waiting for application shutdown.
INFO: Application shutdown complete.
(VllmWorkerProcess pid=29772) INFO 10-21 15:37:38 multiproc_worker_utils.py:244] Worker exiting
(VllmWorkerProcess pid=29774) INFO 10-21 15:37:38 multiproc_worker_utils.py:244] Worker exiting
(VllmWorkerProcess pid=29771) INFO 10-21 15:37:38 multiproc_worker_utils.py:244] Worker exiting
(VllmWorkerProcess pid=29773) INFO 10-21 15:37:38 multiproc_worker_utils.py:244] Worker exiting
/usr/lib/python3.12/multiprocessing/resource_tracker.py:254: UserWarning: resource_tracker: There appear to be 1 leaked shared_memory objects to clean up at shutdown
warnings.warn('resource_tracker: There appear to be %d '
ERROR 10-21 15:37:40 multiproc_worker_utils.py:120] Worker VllmWorkerProcess pid 29772 died, exit code: 1
INFO 10-21 15:37:40 multiproc_worker_utils.py:124] Killing local vLLM worker processes
When I'm not using pipeline parallel, there is no issue
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.