Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Empty file.
160 changes: 160 additions & 0 deletions tests/kernels/moe/modular_kernel_tools/cli_args.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,160 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project

import argparse

import torch

import vllm.model_executor.layers.fused_moe.modular_kernel as mk
from vllm.model_executor.layers.fused_moe.config import FusedMoEQuantConfig

from .common import Config
from .mk_objects import (MK_ALL_PREPARE_FINALIZE_TYPES, MK_FUSED_EXPERT_TYPES,
MK_SINGLE_GPU_PREPARE_FINALIZE_TYPES)


def make_config_arg_parser(description: str):

def to_pf_class_type(s: str) -> mk.FusedMoEPrepareAndFinalize:
for pf in MK_ALL_PREPARE_FINALIZE_TYPES:
if pf.__name__ == s:
return pf
raise ValueError(
f"Cannot find a PrepareFinalize type that matches {s}")

def to_experts_class_type(s: str) -> mk.FusedMoEPermuteExpertsUnpermute:
for fe in MK_FUSED_EXPERT_TYPES:
if fe.__name__ == s:
return fe
raise ValueError(f"Cannot find a FusedExperts type that matches {s}")

def to_quant_torch_dtype(s: str) -> torch.dtype:
if s == "torch.float8_e4m3fn":
return torch.float8_e4m3fn
raise ValueError(f"Unsupported quant type {s}")

parser = argparse.ArgumentParser(description=description)

parser.add_argument(
"--world-size",
type=int,
default=2,
help="Number of ranks that participate in all2all",
)
parser.add_argument(
"--pf-type",
type=to_pf_class_type,
required=True,
help=("Choose a PrepareFinalize Type : "
f"{[x.__name__ for x in MK_ALL_PREPARE_FINALIZE_TYPES]}"),
)
parser.add_argument(
"--experts-type",
type=to_experts_class_type,
required=True,
help=(f"Choose a FusedExpert type : "
f"{[x.__name__ for x in MK_FUSED_EXPERT_TYPES]}"),
)
parser.add_argument(
"-m",
nargs="+",
type=int,
default=[64],
help="num tokens per rank",
)
parser.add_argument(
"-k",
type=int,
default=7168,
help="hidden-size",
)
parser.add_argument(
"-n",
type=int,
default=1024,
help="N dimension of the first fused-moe matmul",
)
parser.add_argument("--num-experts",
type=int,
default=32,
help="Global num experts")
parser.add_argument("--topk",
nargs="+",
type=int,
default=[4, 1],
help="num topk")
parser.add_argument(
"--fused-moe-chunk-size",
nargs="+",
type=int,
help="Fused moe chunk size used for the non-batched fused experts impl."
)

# Quant args
parser.add_argument("--quant-dtype",
type=to_quant_torch_dtype,
help="Quant datatype")
parser.add_argument("--per-token-quantized-activations",
action='store_true',
help=("The input activations must be per-token "
"quantized"))
parser.add_argument("--per-channel-quantized-weights",
action="store_true",
help="The weights must be per-channel quantized.")
parser.add_argument("--block-shape",
nargs="+",
type=int,
help="Quantization block shape")

# Torch trace profile generation args
parser.add_argument("--torch-trace-dir-path",
type=str,
default=None,
help="Get torch trace for single execution")

return parser


def _validate_args(args: argparse.Namespace):

if args.quant_dtype is not None:
assert args.quant_dtype == torch.float8_e4m3fn
if args.block_shape is not None:
assert len(args.block_shape) == 2, (
f"block shape must have 2 elements. got {args.block_shape}")

if args.experts_type in MK_SINGLE_GPU_PREPARE_FINALIZE_TYPES:
assert args.world_size == 1, (
"Single GPU objects need world size set to 1")

if args.torch_trace_dir_path is not None:
from pathlib import Path
assert Path(args.torch_trace_dir_path).is_dir(), (
f"Please create {args.torch_trace_dir_path}")


def make_config(args: argparse.Namespace) -> Config:

_validate_args(args)

quant_config = None
if args.quant_dtype is not None:
quant_config = FusedMoEQuantConfig(
quant_dtype=args.quant_dtype,
per_act_token_quant=args.per_token_quantized_activations,
per_out_ch_quant=args.per_channel_quantized_weights,
block_shape=args.block_shape)

return Config(
Ms=args.m,
K=args.k,
N=args.n,
E=args.num_experts,
topks=args.topk,
dtype=torch.bfloat16, # hard-code
quant_config=quant_config,
prepare_finalize_type=args.pf_type,
fused_experts_type=args.experts_type,
fused_moe_chunk_size=args.fused_moe_chunk_size,
world_size=args.world_size,
torch_trace_dir_path=args.torch_trace_dir_path)
Loading