Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 14 additions & 4 deletions vllm/model_executor/layers/rotary_embedding.py
Original file line number Diff line number Diff line change
Expand Up @@ -507,8 +507,8 @@ def __init__(
dtype: torch.dtype,
short_factor: List[float],
long_factor: List[float],
short_mscale: float = 1.1,
long_mscale: float = 1.225,
short_mscale: float = 1.0,
long_mscale: float = 1.0,
):
super().__init__()

Expand All @@ -530,6 +530,16 @@ def __init__(
self.short_mscale = short_mscale
self.long_mscale = long_mscale

scale = (self.max_position_embeddings /
self.original_max_position_embeddings)

if scale <= 1.0:
self.scaling_factor = 1.0
else:
self.scaling_factor = math.sqrt(
1 + math.log(scale) /
math.log(self.original_max_position_embeddings))

short_cache = self._compute_cos_sin_cache(
original_max_position_embeddings, short_factor, short_mscale)
short_cache = short_cache.to(dtype)
Expand Down Expand Up @@ -565,8 +575,8 @@ def _compute_cos_sin_cache(
inv_freq = self._compute_inv_freq(rescale_factors)
t = torch.arange(max_position_embeddings, dtype=torch.float)
freqs = torch.einsum("i,j -> ij", t, inv_freq)
cos = freqs.cos() * mscale
sin = freqs.sin() * mscale
cos = freqs.cos() * mscale * self.scaling_factor
sin = freqs.sin() * mscale * self.scaling_factor
cache = torch.cat((cos, sin), dim=-1)
return cache

Expand Down