Skip to content

base64 encode fill value for some dtypes with zarr_format=2 #2286

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 0 additions & 1 deletion src/zarr/abc/metadata.py
Original file line number Diff line number Diff line change
@@ -22,7 +22,6 @@ def to_dict(self) -> dict[str, JSON]:
are instances of `Metadata`. Sequences of `Metadata` are similarly recursed into, and
the output of that recursion is collected in a list.
"""
...
out_dict = {}
for field in fields(self):
key = field.name
20 changes: 18 additions & 2 deletions src/zarr/core/metadata/v2.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,9 @@
from __future__ import annotations

import base64
from collections.abc import Iterable
from enum import Enum
from typing import TYPE_CHECKING
from typing import TYPE_CHECKING, cast

if TYPE_CHECKING:
from typing import Any, Literal, Self
@@ -31,7 +32,7 @@ class ArrayV2Metadata(ArrayMetadata):
shape: ChunkCoords
chunk_grid: RegularChunkGrid
data_type: np.dtype[Any]
fill_value: None | int | float = 0
fill_value: None | int | float | str | bytes = 0
order: Literal["C", "F"] = "C"
filters: tuple[numcodecs.abc.Codec, ...] | None = None
dimension_separator: Literal[".", "/"] = "."
@@ -140,6 +141,13 @@ def from_dict(cls, data: dict[str, Any]) -> ArrayV2Metadata:
_data = data.copy()
# check that the zarr_format attribute is correct
_ = parse_zarr_format(_data.pop("zarr_format"))
dtype = parse_dtype(_data["dtype"])

if dtype.kind in "SV":
fill_value_encoded = _data.get("fill_value")
if fill_value_encoded is not None:
fill_value = base64.standard_b64decode(fill_value_encoded)
_data["fill_value"] = fill_value

# zarr v2 allowed arbitrary keys here.
# We don't want the ArrayV2Metadata constructor to fail just because someone put an
@@ -155,6 +163,14 @@ def from_dict(cls, data: dict[str, Any]) -> ArrayV2Metadata:

def to_dict(self) -> dict[str, JSON]:
zarray_dict = super().to_dict()

if self.dtype.kind in "SV" and self.fill_value is not None:
# There's a relationship between self.dtype and self.fill_value
# that mypy isn't aware of. The fact that we have S or V dtype here
# means we should have a bytes-type fill_value.
fill_value = base64.standard_b64encode(cast(bytes, self.fill_value)).decode("ascii")
zarray_dict["fill_value"] = fill_value

_ = zarray_dict.pop("chunk_grid")
zarray_dict["chunks"] = self.chunk_grid.chunk_shape

38 changes: 38 additions & 0 deletions tests/v3/test_v2.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
import json
from collections.abc import Iterator

import numpy as np
@@ -6,6 +7,9 @@
from numcodecs.blosc import Blosc

import zarr
import zarr.core.buffer.cpu
import zarr.core.metadata
import zarr.storage
from zarr import Array
from zarr.storage import MemoryStore, StorePath

@@ -46,3 +50,37 @@ def test_codec_pipeline() -> None:
result = array[:]
expected = np.ones(1)
np.testing.assert_array_equal(result, expected)


@pytest.mark.parametrize("dtype", ["|S", "|V"])
async def test_v2_encode_decode(dtype):
store = zarr.storage.MemoryStore(mode="w")
g = zarr.group(store=store, zarr_format=2)
g.create_array(
name="foo",
shape=(3,),
chunks=(3,),
dtype=dtype,
fill_value=b"X",
)

result = await store.get("foo/.zarray", zarr.core.buffer.default_buffer_prototype())
assert result is not None

serialized = json.loads(result.to_bytes())
expected = {
"chunks": [3],
"compressor": None,
"dtype": f"{dtype}0",
"fill_value": "WA==",
"filters": None,
"order": "C",
"shape": [3],
"zarr_format": 2,
"dimension_separator": ".",
}
assert serialized == expected

data = zarr.open_array(store=store, path="foo")[:]
expected = np.full((3,), b"X", dtype=dtype)
np.testing.assert_equal(data, expected)