Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -533,7 +533,7 @@ def forward_chunk(
self.fc31_input_scale,
self.scaling_vector_size,
sfUseUE8M0=False,
swizzedLayout=False)
isSfSwizzledLayout=False)
x_sf = x_sf.view((x_row, -1))

elif self.has_deepseek_fp8_block_scales:
Expand Down
8 changes: 4 additions & 4 deletions tensorrt_llm/_torch/modules/fused_moe/quantization.py
Original file line number Diff line number Diff line change
Expand Up @@ -347,8 +347,8 @@ def load_expert_w3_w1_weight(self, module: torch.nn.Module,
Load w1 and w3 weights for each expert.
Override this method if you need to preprocess the weights differently.
"""
# device don't have to be 'cuda', e.g. 'cpu' for online EPLB
device = dst_w3_w1_weight.device
assert device.type == "cuda"
w1_weight_shard = load_weight_shard(w1_weight,
module.tp_size,
module.tp_rank,
Expand All @@ -372,8 +372,8 @@ def load_expert_w2_weight(self, module: torch.nn.Module,
Load w2 weight for each expert.
Override this method if you need to preprocess the weights differently.
"""
# device don't have to be 'cuda', e.g. 'cpu' for online EPLB
device = dst_w2_weight.device
assert device.type == "cuda"
w2_weight_shard = load_weight_shard(w2_weight,
module.tp_size,
module.tp_rank,
Expand Down Expand Up @@ -1537,8 +1537,8 @@ def load_expert_w3_w1_weight_scale_nvfp4(
self, module: torch.nn.Module, w1_weight_scale: torch.Tensor,
w3_weight_scale: torch.Tensor,
dst_w3_w1_weight_scale: torch.Tensor):
# device don't have to be 'cuda', e.g. 'cpu' for online EPLB
device = dst_w3_w1_weight_scale.device
assert device.type == "cuda"
w1_weight_scale = load_weight_shard(w1_weight_scale,
module.tp_size,
module.tp_rank,
Expand Down Expand Up @@ -1577,8 +1577,8 @@ def load_expert_w3_w1_weight_scale_nvfp4(
def load_expert_w2_weight_scale_nvfp4(self, module: torch.nn.Module,
w2_weight_scale: torch.Tensor,
dst_w2_weight_scale: torch.Tensor):
# device don't have to be 'cuda', e.g. 'cpu' for online EPLB
device = dst_w2_weight_scale.device
assert device.type == "cuda"
w2_weight_scale = load_weight_shard(w2_weight_scale,
module.tp_size,
module.tp_rank,
Expand Down