forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 68
Integrate from upstream #251
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Summary: Pull Request resolved: pytorch#12288 Current implementation of Tensor takes an intrusive_ptr as an argument for storing data. But instead of requiring users to explicitly pass an intrusive_ptr we want them to pass args for intrusive ptr directly which are forwarded internally through new helper function called make_tensor Reviewed By: ezyang Differential Revision: D10152661 fbshipit-source-id: bfa72de161ace3fd1c4573427abcd1bfbd12e29e
Summary: Address pytorch#12326 Pull Request resolved: pytorch#12344 Differential Revision: D10210681 Pulled By: driazati fbshipit-source-id: fcc2e26b79dd2d7d5f9e7ef930e2bf434f2a7e08
…pytorch#12355) Summary: This is to move us along the path to removing Type from the public API. Pull Request resolved: pytorch#12355 Reviewed By: ezyang Differential Revision: D10212616 Pulled By: gchanan fbshipit-source-id: c9cd128d1111ab219cb0b2f3bf5b632502ab97c0
…move native_tensor without size. Differential Revision: D10212616 Original commit changeset: c9cd128d1111 fbshipit-source-id: 923781ba9cd6e60e7c92789832e5601a1fd848b5
Summary: Obviously, the grads of conv weight and conv input are not relevant to the bias, but the original `convXd_input` and `convXd_weight` methods receive a `bias` parameter. What's more, while the doc says `bias` should have the shape `(out_channels,)`, one will get a `RuntimeError` if the bias != None and in_channels != out_channels, for the weight of transposed conv has the shape `(in_channels, out_channels, kH, kW)` while the weight of vanilla conv has the shape `(out_channels, in_channels, kH, kW)` ``` RuntimeError: Given transposed=1, weight of size [channel1, channel2, kH, kW], expected bias to be 1-dimensional with channel2 elements, but got bias of size [channel1] instead ``` Pull Request resolved: pytorch#12281 Differential Revision: D10217370 Pulled By: ezyang fbshipit-source-id: bc00b439e5ae539276a5e678bdb92af700197bb2
Summary: Pull Request resolved: pytorch#12293 Adding support for additional device types besides cuda and cpu. Reviewed By: ezyang Differential Revision: D10175683 fbshipit-source-id: 7a8a35c3f1b13a3b6ed84dd2d835f3902a418a6c
Summary: Pull Request resolved: pytorch#12352 Differential Revision: D10219743 Pulled By: zdevito fbshipit-source-id: 4d9441dc3748616f9b1f0734c65ec1a7abb0d663
Summary: Previously, we were only enabling Flush-To-Zero (FTZ) and Denormals-Are-Zero (DAZ) when compiling with SSE3 enabled. After, Christian's patch (pytorch#12109) we won't be compiling core files with SSE3 or SSE4 enabled, to better support older AMD processors. This moves the FTZ and DAZ code behind a runtime CPU check in preparation for that change. Pull Request resolved: pytorch#12386 Differential Revision: D10222237 Pulled By: colesbury fbshipit-source-id: 7ffe32561ab965e1e5f9eb6e679602bbf4775538
…or& (pytorch#12180) Summary: Pull Request resolved: pytorch#12180 I had to fix a lot of call sites, because a lot of places assume that you can actually get a const vector&, and if the internal representation of sizes in a tensor is NOT a vector, it's not possible to fulfill this API contract. Framework changes: - I deleted TensorImpl::dims(); caffe2::Tensor::dims() just forwards to sizes() now. - De-templatized SetDims; now it is an explicit list of ArrayRef and variadic overloads. This makes implicit conversions work again, so I don't need to explicitly list the std::vector cases too. - As a knock-on effect, this causes Reset() to accept at::IntList as well as const std::vector<int64_t>& - Edited variadic overloads of SetDims to all forward to the underlying arbitrary-dim implementation, reducing code duplication. (It's probably marginally less efficient in the new world.) - Replace Tensor constructor accepting const std::vector<int64_t>& with at::IntList - Make MKLTensor accept ArrayRef along with vector in constructor and Reset (unfortunately, no implicit conversions here, since it's templated on index type.) - There are a few other places, like cudnn, where I changed functions that previously took const std::vector<int64_t>& to take at::IntList instead. Classification of call site changes: - 'const std::vector<int64_t>& x_dims = x.dims()' ==> 'at::IntList x_dims = x.dims()' - 'std::vector<int64_t> x_dims = x.dims()' ==> 'std::vector<int64_t> x_dims = x.dims().vec()' (we need a copy!) Usually this is because we're about to mutably modify the vector to compute some new dimension. However, it also very commonly occurs in the form: 'x_dims_ = x.dims()' because we frequently cache sizes in operators. - Instead of constructing std::vector<int64_t>{blah, blah}, construct an at::IntList directly ArrayRef changes: - cbegin()/cend() iterators, they operate the same aas begin()/end() because everything on ArrayRef is const. - Moved operator<< into ArrayRef.h, so that it's always available when working with ArrayRef. I also templated it, so it now works on an ArrayRef of any type. - Add operator== overload for ArrayRef, and also add variants to permit comparison of ArrayRef with std::vector, a very common operation. (The non-templated version of operator== can get these automatically via implicit conversion, but with templates C++ refuses to do any explicit conversions.) I'm planning to audit all dims() call sites to make sure they don't expect 'auto x = t.dims()' to give you an x whose lifetime can validly outlive the tensor. I opted not to do a dims() to sizes() rename, because dims() also matches the protobufs accessor. Bad news! Reviewed By: jerryzh168 Differential Revision: D10111759 fbshipit-source-id: a2a81dc4b92c22ad4b3b8ef4077a7e97b6479452
Summary: this removes a bunch of spam output from the build. This is (1) cleaner (2) a couple seconds faster in some cases, e.g. my slow-rendering emacs-based shell Pull Request resolved: pytorch#12392 Differential Revision: D10225340 Pulled By: anderspapitto fbshipit-source-id: 477ee76d24f8db50084b1e261db8c22733de923b
Summary: Pull Request resolved: pytorch#12377 Differential Revision: D10219213 Pulled By: zdevito fbshipit-source-id: 85cfa4467c672ff5a718e58cfae7e8c8b1cfc532
…ld of smaller size (pytorch#12315) Summary: Pull Request resolved: pytorch#12315 Allows inclusion of needed reduce_front_back_* ops only Differential Revision: D10188611 fbshipit-source-id: e17fd955ac5aa163a039872b6a435942b1e1e164
Summary: Pull Request resolved: pytorch#12361 Differential Revision: D10218404 Pulled By: jamesr66a fbshipit-source-id: f02137f97cd138155ba8181df3ab65f41d5abab7
Summary: * Remove duplicate math transpilation function * Modify regex to expand matches to more __device__ functions * Try a different tack. Apply math transpilations only to .cu and .cuh files * Undo change that's not required anymore since we're not using regex to detect device functions This should address "overtranspilation" as observed in another PR. bddppq ezyang Pull Request resolved: pytorch#12387 Differential Revision: D10226798 Pulled By: bddppq fbshipit-source-id: fa4aac8cd38d8f7ef641fad5129ed4714c0fada5
Summary: Signed-off-by: Edward Z. Yang <[email protected]> CC deepakn94 Pull Request resolved: pytorch#12370 Differential Revision: D10220135 Pulled By: ezyang fbshipit-source-id: 6d1a8a383951ae52753e4f75a14b8080bf02b815
Summary: This PR is the start of weak script mode for functions Weak scripts allow you to compile a graph from Python code at runtime by annotating with `torch.jit.weak_script` for use in the JIT without affecting eager execution. Scripts are compiled lazily on the first call in a graph to avoid long Python startup times. apaszke zdevito ezyang Pull Request resolved: pytorch#11963 Differential Revision: D10183451 Pulled By: driazati fbshipit-source-id: 128750994d5eb148a984f8aba4113525c3e248c8
Summary: Pull Request resolved: pytorch#12295 Add ability to use custom implementations of thread pool instead of TaskThreadPool Reviewed By: yinghai Differential Revision: D10046685 fbshipit-source-id: 95da8c938b8e60b728484c520319b09b0c87ff11
…pytorch#12403) Summary: Same as before, but with "initialTensorOptions()" instead of "TensorOptions(false)". Pull Request resolved: pytorch#12403 Differential Revision: D10225427 Pulled By: gchanan fbshipit-source-id: 60bd025a5cc15bdbbab6eafc91ea55f5f2c3117e
…ytorch#12415) Summary: Pull Request resolved: pytorch#12415 Original commit changeset: 95da8c938b8e Reviewed By: ilia-cher Differential Revision: D10229804 fbshipit-source-id: 32921600925b65edb5bb201c9afba0d03ed49426
Summary: Pull Request resolved: pytorch#12408 Using static_cast is better than reinterpret_cast because it will cause a compile time error in the following cases, while reinterpret_cast would run into undefined behavior and likely segfault: - Src and Dst are not related through inheritance (say converting int* to double*) - Src and Dst are related through virtual inheritance This `dynamic_cast_if_rtti` is still unsafe because `dynamic_cast` and `static_cast` behave differently if the runtime type is not what you expected (i.e. dynamic_cast returns nullptr or throws whereas static_cast has undefined behavior), but it's much safer than doing reinterpret_cast. Reviewed By: Yangqing Differential Revision: D10227820 fbshipit-source-id: 530bebe9fe1ff88646f435096d7314b65622f31a
Summary: Pull Request resolved: pytorch#11502 TypeMeta now is only a pointer to a TypeMetaData structure, of which there is exactly one global instance per type. This reduces the size of everything storing a TypeMeta (Tensor, Blob, ...) and potentially improves performance. Also, this diff gets rid of the type name registry in favor of static strings. Experiments (summary: 1-3% perf gain) - Service Lab: https://our.intern.facebook.com/intern/servicelab/30712497/ -> No significant results found. - Mobile Lab c10bench.json: https://our.intern.facebook.com/intern/fblearner/details/75984908/ -> 1-3% perf gain - Mobile Lab c10bench default: https://our.intern.facebook.com/intern/fblearner/details/75984999/ -> 2-3% perf gain - adindexer canary: https://our.intern.facebook.com/intern/ads/canary/413002142824203076 -> no significant changes (benchmark too noisy) - adfinder canary: https://our.intern.facebook.com/intern/ads/canary/413002166737860362 -> no significant changes (benchmark too noisy) Reviewed By: dzhulgakov Differential Revision: D9763422 fbshipit-source-id: fc08937f114af5ff9f3ddbe7c7e396942868cdf5
Summary: In our #better-engineering quest of removing all uses of catch in favor of gtest, this PR ports JIT tests to gtest. After pytorch#11846 lands, we will be able to delete catch. I don't claim to use/write these tests much (though I wrote the custom operator tests) so please do scrutinize whether you will want to write tests in the way I propose. Basically: 1. One function declaration per "test case" in test/cpp/jit/test.h 2. One definition in test/cpp/jit/test.cpp 3. If you want to be able to run it in Python, add it to `runJitTests()` which is called from Python tests 4. If you want to be able to run it in C++, add a `JIT_TEST` line in test/cpp/jit/gtest.cpp Notice also I was able to share support code between C++ frontend and JIT tests, which is healthy. ezyang apaszke zdevito Pull Request resolved: pytorch#12030 Differential Revision: D10207745 Pulled By: goldsborough fbshipit-source-id: d4bae087e4d03818b72b8853cd5802d79a4cf32e
Summary: Fixes: pytorch#12406 Thank you, jcjohnson, for reporting. Pull Request resolved: pytorch#12434 Differential Revision: D10235799 Pulled By: soumith fbshipit-source-id: 44ee35010bac3791901f604095f5b4bc66b0e7f8
Summary: Signed-off-by: Marcela Morales Quispe <[email protected]> Pull Request resolved: pytorch#12441 Differential Revision: D10236743 Pulled By: SsnL fbshipit-source-id: c0e446a81a388cf6a558bf7ab8ba0e59703dc169
Summary: When testing D10220313, I ran into this bug. Reviewed By: aazzolini Differential Revision: D10224295 fbshipit-source-id: f46d7333612bce437c1ae6c0b0b579fc2a639665
Summary: A possible fix for the problem stated in pytorch#12410. Pull Request resolved: pytorch#12446 Differential Revision: D10238572 Pulled By: soumith fbshipit-source-id: 17ade148c4036d2481b878e5cd7d9d67c1e3626e
lcskrishna
pushed a commit
to lcskrishna/pytorch
that referenced
this pull request
May 15, 2023
When tensor is resized, reference array to it's sizes may become invalid. Make a copy in advance. <details> <summary>ASAN report</summary> ``` ================================================================= ==1115867==ERROR: AddressSanitizer: heap-use-after-free on address 0x61000013d790 at pc 0x03ff8e7da360 bp 0x03fff53c83a0 sp 0x03fff53c8390 READ of size 8 at 0x61000013d790 thread T0 #0 0x3ff8e7da35f in c10::SymInt::is_heap_allocated() const /home/user/pytorch/c10/core/SymInt.h:154 ROCm#1 0x3ff8e7da35f in c10::SymInt::maybe_as_int() const /home/user/pytorch/c10/core/SymInt.h:215 ROCm#2 0x3ff8e7d0a6d in c10::SymInt::sym_eq(c10::SymInt const&) const /home/user/pytorch/c10/core/SymInt.cpp:69 ROCm#3 0x3ff7a9ab0bd in c10::SymInt::operator==(c10::SymInt const&) const /home/user/pytorch/c10/core/SymInt.h:177 ROCm#4 0x3ff7a9aaedd in bool std::__equal<false>::equal<c10::SymInt const*, c10::SymInt const*>(c10::SymInt const*, c10::SymInt const*, c10::SymInt const*) /usr/lib/gcc/s390x-ibm-linux-gnu/11/include/g++- v11/bits/stl_algobase.h:1162 ROCm#5 0x3ff7a9aae4b in bool std::__equal_aux1<c10::SymInt const*, c10::SymInt const*>(c10::SymInt const*, c10::SymInt const*, c10::SymInt const*) /usr/lib/gcc/s390x-ibm-linux-gnu/11/include/g++-v11/bits/ stl_algobase.h:1211 ROCm#6 0x3ff7a9aae05 in bool std::__equal_aux<c10::SymInt const*, c10::SymInt const*>(c10::SymInt const*, c10::SymInt const*, c10::SymInt const*) /usr/lib/gcc/s390x-ibm-linux-gnu/11/include/g++-v11/bits/s tl_algobase.h:1219 ROCm#7 0x3ff7a9aad97 in bool std::equal<c10::SymInt const*, c10::SymInt const*>(c10::SymInt const*, c10::SymInt const*, c10::SymInt const*) /usr/lib/gcc/s390x-ibm-linux-gnu/11/include/g++-v11/bits/stl_alg obase.h:1556 ROCm#8 0x3ff4b23c771 in c10::ArrayRef<c10::SymInt>::equals(c10::ArrayRef<c10::SymInt>) const /home/user/pytorch/c10/util/ArrayRef.h:188 ROCm#9 0x3ff4cb91bc1 in bool c10::operator!=<c10::SymInt>(c10::ArrayRef<c10::SymInt>, c10::ArrayRef<c10::SymInt>) /home/user/pytorch/c10/util/ArrayRef.h:341 ROCm#10 0x3ff6d1b57ff in torch::ADInplaceOrView::resize_(c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat>) /home/user/pytorch/torch/csrc/autograd/Variab leTypeManual.cpp:408 ROCm#11 0x3ff6d1e59c7 in c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor const& (c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c1 0::MemoryFormat>), &torch::ADInplaceOrView::resize_>, at::Tensor const&, c10::guts::typelist::typelist<c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat> > >::operator()(c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat>) /home/user/pytorch/aten/src/ATen/core/boxing/impl/WrapFunctionIntoFunctor.h:13 ROCm#12 0x3ff6d1e59c7 in c10::impl::wrap_kernel_functor_unboxed_<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor const& (c10::DispatchKeySet, at::Tensor const&, c10: :ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat>), &torch::ADInplaceOrView::resize_>, at::Tensor const&, c10::guts::typelist::typelist<c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::Sy mInt>, c10::optional<c10::MemoryFormat> > >, at::Tensor const& (c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat>)>::call(c10::OperatorKernel*, c10::Disp atchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat>) /home/user/pytorch/aten/src/ATen/core/boxing/impl/make_boxed_from_unboxed_functor.h:480 ROCm#13 0x3ff51ca5129 in at::Tensor const& c10::callUnboxedKernelFunction<at::Tensor const&, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat> >(void*, c10::OperatorKernel*, c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>&&, c10::optional<c10::MemoryFormat>&&) /home/user/pytorch/aten/src/ATen/core/boxing/KernelFunction_impl.h:50 ROCm#14 0x3ff51ca6e8f in at::Tensor const& c10::KernelFunction::call<at::Tensor const&, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat> >(c10::OperatorHandle const&, c10::D ispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat>) const /home/user/pytorch/aten/src/ATen/core/boxing/KernelFunction_impl.h:90 ROCm#15 0x3ff51ca6e8f in at::Tensor const& c10::Dispatcher::redispatch<at::Tensor const&, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat> >(c10::TypedOperatorHandle<at::Ten sor const& (at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat>)> const&, c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat>) const /home/user/pytorch/aten/src/ATen/core/dispatch/Dispatcher.h:656 ROCm#16 0x3ff5182006b in c10::TypedOperatorHandle<at::Tensor const& (at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat>)>::redispatch(c10::DispatchKeySet, at::Tensor const&, c 10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat>) const /home/user/pytorch/aten/src/ATen/core/dispatch/Dispatcher.h:492 ROCm#17 0x3ff5182006b in at::_ops::resize_::redispatch(c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat>) aten/src/ATen/Operators_4.cpp:2144 ROCm#18 0x3ff6d1d5e07 in at::redispatch::resize__symint(c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat>) aten/src/ATen/RedispatchFunctions.h:2847 ROCm#19 0x3ff6d1bbb67 in torch::autograd::VariableType::(anonymous namespace)::resize_(c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat>) /home/user/pyto rch/torch/csrc/autograd/VariableTypeManual.cpp:243 ROCm#20 0x3ff6d1bd197 in c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor const& (c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c1 0::MemoryFormat>), &torch::autograd::VariableType::(anonymous namespace)::resize_>, at::Tensor const&, c10::guts::typelist::typelist<c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10 ::optional<c10::MemoryFormat> > >::operator()(c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat>) /home/user/pytorch/aten/src/ATen/core/boxing/impl/WrapFu nctionIntoFunctor.h:13 ROCm#21 0x3ff6d1bd197 in c10::impl::wrap_kernel_functor_unboxed_<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor const& (c10::DispatchKeySet, at::Tensor const&, c10: :ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat>), &torch::autograd::VariableType::(anonymous namespace)::resize_>, at::Tensor const&, c10::guts::typelist::typelist<c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat> > >, at::Tensor const& (c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat>)>::call(c 10::OperatorKernel*, c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat>) /home/user/pytorch/aten/src/ATen/core/boxing/impl/make_boxed_from_unboxed_functor .h:480 ROCm#22 0x3ff51ca5129 in at::Tensor const& c10::callUnboxedKernelFunction<at::Tensor const&, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat> >(void*, c10::OperatorKernel*, c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>&&, c10::optional<c10::MemoryFormat>&&) /home/user/pytorch/aten/src/ATen/core/boxing/KernelFunction_impl.h:50 ROCm#23 0x3ff5181ead1 in at::Tensor const& c10::KernelFunction::call<at::Tensor const&, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat> >(c10::OperatorHandle const&, c10::D ispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat>) const /home/user/pytorch/aten/src/ATen/core/boxing/KernelFunction_impl.h:90 ROCm#24 0x3ff5181ead1 in at::Tensor const& c10::Dispatcher::call<at::Tensor const&, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat> >(c10::TypedOperatorHandle<at::Tensor co nst& (at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat>)> const&, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat>) const /home/user/pytorch/at en/src/ATen/core/dispatch/Dispatcher.h:639 ROCm#25 0x3ff5181ead1 in c10::TypedOperatorHandle<at::Tensor const& (at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat>)>::call(at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat>) const /home/user/pytorch/aten/src/ATen/core/dispatch/Dispatcher.h:487 ROCm#26 0x3ff5181ead1 in at::_ops::resize_::call(at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat>) aten/src/ATen/Operators_4.cpp:2137 ROCm#27 0x3ff79b44fcf in at::Tensor::resize__symint(c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat>) const aten/src/ATen/core/TensorBody.h:2452 ROCm#28 0x3ff79a802db in torch::autograd::THPVariable_resize_(_object*, _object*, _object*)::$_0::operator()(at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat>) const /home/us er/pytorch/torch/csrc/autograd/generated/python_variable_methods.cpp:13417 ROCm#29 0x3ff7999f1eb in torch::autograd::THPVariable_resize_(_object*, _object*, _object*) /home/user/pytorch/torch/csrc/autograd/generated/python_variable_methods.cpp:13419 ROCm#30 0x3ffa2c9b009 in method_vectorcall_VARARGS_KEYWORDS Objects/descrobject.c:344 ROCm#31 0x3ffa2df00a9 in _PyObject_VectorcallTstate Include/cpython/abstract.h:114 ROCm#32 0x3ffa2df013d in PyObject_Vectorcall Include/cpython/abstract.h:123 ROCm#33 0x3ffa2e05447 in call_function Python/ceval.c:5891 ROCm#34 0x3ffa2dff7d7 in _PyEval_EvalFrameDefault Python/ceval.c:4198 ROCm#35 0x3ffa2df052b in _PyEval_EvalFrame Include/internal/pycore_ceval.h:46 ROCm#36 0x3ffa2e02b67 in _PyEval_Vector Python/ceval.c:5065 ROCm#37 0x3ffa2c8aec1 in _PyFunction_Vectorcall Objects/call.c:342 ROCm#38 0x3ffa2c8ab15 in PyVectorcall_Call Objects/call.c:255 ROCm#39 0x3ffa2c8ac65 in _PyObject_Call Objects/call.c:290 ROCm#40 0x3ffa2c8ada9 in PyObject_Call Objects/call.c:317 ROCm#41 0x3ffa2e059c7 in do_call_core Python/ceval.c:5943 ROCm#42 0x3ffa2dffd39 in _PyEval_EvalFrameDefault Python/ceval.c:4277 ROCm#43 0x3ffa2df052b in _PyEval_EvalFrame Include/internal/pycore_ceval.h:46 ROCm#44 0x3ffa2e02b67 in _PyEval_Vector Python/ceval.c:5065 ROCm#45 0x3ffa2c8aec1 in _PyFunction_Vectorcall Objects/call.c:342 ROCm#46 0x3ffa2c8ab15 in PyVectorcall_Call Objects/call.c:255 ROCm#47 0x3ffa2c8ac65 in _PyObject_Call Objects/call.c:290 ROCm#48 0x3ffa2c8ada9 in PyObject_Call Objects/call.c:317 ROCm#49 0x3ffa2e059c7 in do_call_core Python/ceval.c:5943 ROCm#50 0x3ffa2dffd39 in _PyEval_EvalFrameDefault Python/ceval.c:4277 ROCm#51 0x3ffa2df052b in _PyEval_EvalFrame Include/internal/pycore_ceval.h:46 ROCm#52 0x3ffa2e02b67 in _PyEval_Vector Python/ceval.c:5065 ROCm#53 0x3ffa2c8aec1 in _PyFunction_Vectorcall Objects/call.c:342 ROCm#54 0x3ffa2df00a9 in _PyObject_VectorcallTstate Include/cpython/abstract.h:114 ROCm#55 0x3ffa2df013d in PyObject_Vectorcall Include/cpython/abstract.h:123 ROCm#56 0x3ffa2e05447 in call_function Python/ceval.c:5891 ROCm#57 0x3ffa2dff7d7 in _PyEval_EvalFrameDefault Python/ceval.c:4198 ROCm#58 0x3ffa2df052b in _PyEval_EvalFrame Include/internal/pycore_ceval.h:46 ROCm#59 0x3ffa2e02b67 in _PyEval_Vector Python/ceval.c:5065 ROCm#60 0x3ffa2c8aec1 in _PyFunction_Vectorcall Objects/call.c:342 ROCm#61 0x3ffa2c8e941 in _PyObject_VectorcallTstate Include/cpython/abstract.h:114 ROCm#62 0x3ffa2c8eddd in method_vectorcall Objects/classobject.c:53 ROCm#63 0x3ffa2df00a9 in _PyObject_VectorcallTstate Include/cpython/abstract.h:114 ROCm#64 0x3ffa2df013d in PyObject_Vectorcall Include/cpython/abstract.h:123 ROCm#65 0x3ffa2e05447 in call_function Python/ceval.c:5891 ROCm#66 0x3ffa2dff905 in _PyEval_EvalFrameDefault Python/ceval.c:4213 ROCm#67 0x3ffa2df052b in _PyEval_EvalFrame Include/internal/pycore_ceval.h:46 ROCm#68 0x3ffa2e02b67 in _PyEval_Vector Python/ceval.c:5065 ROCm#69 0x3ffa2c8aec1 in _PyFunction_Vectorcall Objects/call.c:342 ROCm#70 0x3ffa2df00a9 in _PyObject_VectorcallTstate Include/cpython/abstract.h:114 ROCm#71 0x3ffa2df013d in PyObject_Vectorcall Include/cpython/abstract.h:123 ROCm#72 0x3ffa2e05447 in call_function Python/ceval.c:5891 ROCm#73 0x3ffa2dff7d7 in _PyEval_EvalFrameDefault Python/ceval.c:4198 ROCm#74 0x3ffa2df052b in _PyEval_EvalFrame Include/internal/pycore_ceval.h:46 ROCm#75 0x3ffa2e02b67 in _PyEval_Vector Python/ceval.c:5065 ROCm#76 0x3ffa2c8aec1 in _PyFunction_Vectorcall Objects/call.c:342 ROCm#77 0x3ffa2c8e941 in _PyObject_VectorcallTstate Include/cpython/abstract.h:114 ROCm#78 0x3ffa2c8eddd in method_vectorcall Objects/classobject.c:53 ROCm#79 0x3ffa2df00a9 in _PyObject_VectorcallTstate Include/cpython/abstract.h:114 ROCm#80 0x3ffa2df013d in PyObject_Vectorcall Include/cpython/abstract.h:123 ROCm#81 0x3ffa2e05447 in call_function Python/ceval.c:5891 ROCm#82 0x3ffa2dffa57 in _PyEval_EvalFrameDefault Python/ceval.c:4231 ROCm#83 0x3ffa2df052b in _PyEval_EvalFrame Include/internal/pycore_ceval.h:46 ROCm#84 0x3ffa2e02b67 in _PyEval_Vector Python/ceval.c:5065 ROCm#85 0x3ffa2c8aec1 in _PyFunction_Vectorcall Objects/call.c:342 ROCm#86 0x3ffa2c8e941 in _PyObject_VectorcallTstate Include/cpython/abstract.h:114 ROCm#87 0x3ffa2c8eddd in method_vectorcall Objects/classobject.c:53 ROCm#88 0x3ffa2df00a9 in _PyObject_VectorcallTstate Include/cpython/abstract.h:114 ROCm#89 0x3ffa2df013d in PyObject_Vectorcall Include/cpython/abstract.h:123 ROCm#90 0x3ffa2e05447 in call_function Python/ceval.c:5891 ROCm#91 0x3ffa2dffa57 in _PyEval_EvalFrameDefault Python/ceval.c:4231 ROCm#92 0x3ffa2df052b in _PyEval_EvalFrame Include/internal/pycore_ceval.h:46 ROCm#93 0x3ffa2e02b67 in _PyEval_Vector Python/ceval.c:5065 ROCm#94 0x3ffa2c8aec1 in _PyFunction_Vectorcall Objects/call.c:342 ROCm#95 0x3ffa2c8e941 in _PyObject_VectorcallTstate Include/cpython/abstract.h:114 ROCm#96 0x3ffa2c8eddd in method_vectorcall Objects/classobject.c:53 ROCm#97 0x3ffa2c8ab9b in PyVectorcall_Call Objects/call.c:267 ROCm#98 0x3ffa2c8ac65 in _PyObject_Call Objects/call.c:290 ROCm#99 0x3ffa2c8ada9 in PyObject_Call Objects/call.c:317 ROCm#100 0x3ffa2e059c7 in do_call_core Python/ceval.c:5943 ROCm#101 0x3ffa2dffd39 in _PyEval_EvalFrameDefault Python/ceval.c:4277 ROCm#102 0x3ffa2df052b in _PyEval_EvalFrame Include/internal/pycore_ceval.h:46 ROCm#103 0x3ffa2e02b67 in _PyEval_Vector Python/ceval.c:5065 ROCm#104 0x3ffa2c8aec1 in _PyFunction_Vectorcall Objects/call.c:342 ROCm#105 0x3ffa2c8a695 in _PyObject_FastCallDictTstate Objects/call.c:153 ROCm#106 0x3ffa2c8b271 in _PyObject_Call_Prepend Objects/call.c:431 ROCm#107 0x3ffa2d3f307 in slot_tp_call Objects/typeobject.c:7494 ROCm#108 0x3ffa2c8a933 in _PyObject_MakeTpCall Objects/call.c:215 ROCm#109 0x3ffa2df0081 in _PyObject_VectorcallTstate Include/cpython/abstract.h:112 ROCm#110 0x3ffa2df013d in PyObject_Vectorcall Include/cpython/abstract.h:123 ROCm#111 0x3ffa2e05447 in call_function Python/ceval.c:5891 ROCm#112 0x3ffa2dffa57 in _PyEval_EvalFrameDefault Python/ceval.c:4231 ROCm#113 0x3ffa2df052b in _PyEval_EvalFrame Include/internal/pycore_ceval.h:46 ROCm#114 0x3ffa2e02b67 in _PyEval_Vector Python/ceval.c:5065 ROCm#115 0x3ffa2c8aec1 in _PyFunction_Vectorcall Objects/call.c:342 ROCm#116 0x3ffa2df00a9 in _PyObject_VectorcallTstate Include/cpython/abstract.h:114 ROCm#117 0x3ffa2df013d in PyObject_Vectorcall Include/cpython/abstract.h:123 ROCm#118 0x3ffa2e05447 in call_function Python/ceval.c:5891 ROCm#119 0x3ffa2dff7d7 in _PyEval_EvalFrameDefault Python/ceval.c:4198 ROCm#120 0x3ffa2df052b in _PyEval_EvalFrame Include/internal/pycore_ceval.h:46 ROCm#121 0x3ffa2e02b67 in _PyEval_Vector Python/ceval.c:5065 ROCm#122 0x3ffa2c8aec1 in _PyFunction_Vectorcall Objects/call.c:342 ROCm#123 0x3ffa2c8ab15 in PyVectorcall_Call Objects/call.c:255 ROCm#124 0x3ffa2c8ac65 in _PyObject_Call Objects/call.c:290 ROCm#125 0x3ffa2c8ada9 in PyObject_Call Objects/call.c:317 ROCm#126 0x3ffa2e059c7 in do_call_core Python/ceval.c:5943 ROCm#127 0x3ffa2dffd39 in _PyEval_EvalFrameDefault Python/ceval.c:4277 ROCm#128 0x3ffa2df052b in _PyEval_EvalFrame Include/internal/pycore_ceval.h:46 ROCm#129 0x3ffa2e02b67 in _PyEval_Vector Python/ceval.c:5065 ROCm#130 0x3ffa2c8aec1 in _PyFunction_Vectorcall Objects/call.c:342 ROCm#131 0x3ffa2df00a9 in _PyObject_VectorcallTstate Include/cpython/abstract.h:114 ROCm#132 0x3ffa2df013d in PyObject_Vectorcall Include/cpython/abstract.h:123 ROCm#133 0x3ffa2e05447 in call_function Python/ceval.c:5891 ROCm#134 0x3ffa2dff779 in _PyEval_EvalFrameDefault Python/ceval.c:4181 ROCm#135 0x3ffa2df052b in _PyEval_EvalFrame Include/internal/pycore_ceval.h:46 ROCm#136 0x3ffa2e02b67 in _PyEval_Vector Python/ceval.c:5065 ROCm#137 0x3ffa2c8aec1 in _PyFunction_Vectorcall Objects/call.c:342 ROCm#138 0x3ffa2c8e941 in _PyObject_VectorcallTstate Include/cpython/abstract.h:114 ROCm#139 0x3ffa2c8eddd in method_vectorcall Objects/classobject.c:53 ROCm#140 0x3ffa2df00a9 in _PyObject_VectorcallTstate Include/cpython/abstract.h:114 ROCm#141 0x3ffa2df013d in PyObject_Vectorcall Include/cpython/abstract.h:123 ROCm#142 0x3ffa2e05447 in call_function Python/ceval.c:5891 ROCm#143 0x3ffa2dff779 in _PyEval_EvalFrameDefault Python/ceval.c:4181 ROCm#144 0x3ffa2df052b in _PyEval_EvalFrame Include/internal/pycore_ceval.h:46 ROCm#145 0x3ffa2e02b67 in _PyEval_Vector Python/ceval.c:5065 ROCm#146 0x3ffa2c8aec1 in _PyFunction_Vectorcall Objects/call.c:342 ROCm#147 0x3ffa2c8a695 in _PyObject_FastCallDictTstate Objects/call.c:153 ROCm#148 0x3ffa2c8b271 in _PyObject_Call_Prepend Objects/call.c:431 ROCm#149 0x3ffa2d3f307 in slot_tp_call Objects/typeobject.c:7494 ROCm#150 0x3ffa2c8ad17 in _PyObject_Call Objects/call.c:305 ROCm#151 0x3ffa2c8ada9 in PyObject_Call Objects/call.c:317 ROCm#152 0x3ffa2e059c7 in do_call_core Python/ceval.c:5943 ROCm#153 0x3ffa2dffd39 in _PyEval_EvalFrameDefault Python/ceval.c:4277 ROCm#154 0x3ffa2df052b in _PyEval_EvalFrame Include/internal/pycore_ceval.h:46 ROCm#155 0x3ffa2e02b67 in _PyEval_Vector Python/ceval.c:5065 ROCm#156 0x3ffa2c8aec1 in _PyFunction_Vectorcall Objects/call.c:342 ROCm#157 0x3ffa2df00a9 in _PyObject_VectorcallTstate Include/cpython/abstract.h:114 ROCm#158 0x3ffa2df013d in PyObject_Vectorcall Include/cpython/abstract.h:123 ROCm#159 0x3ffa2e05447 in call_function Python/ceval.c:5891 ROCm#160 0x3ffa2dff905 in _PyEval_EvalFrameDefault Python/ceval.c:4213 ROCm#161 0x3ffa2df052b in _PyEval_EvalFrame Include/internal/pycore_ceval.h:46 ROCm#162 0x3ffa2e02b67 in _PyEval_Vector Python/ceval.c:5065 ROCm#163 0x3ffa2c8aec1 in _PyFunction_Vectorcall Objects/call.c:342 ROCm#164 0x3ffa2c8e941 in _PyObject_VectorcallTstate Include/cpython/abstract.h:114 ROCm#165 0x3ffa2c8eddd in method_vectorcall Objects/classobject.c:53 ROCm#166 0x3ffa2df00a9 in _PyObject_VectorcallTstate Include/cpython/abstract.h:114 ROCm#167 0x3ffa2df013d in PyObject_Vectorcall Include/cpython/abstract.h:123 ROCm#168 0x3ffa2e05447 in call_function Python/ceval.c:5891 ROCm#169 0x3ffa2dffa57 in _PyEval_EvalFrameDefault Python/ceval.c:4231 ROCm#170 0x3ffa2df052b in _PyEval_EvalFrame Include/internal/pycore_ceval.h:46 ROCm#171 0x3ffa2e02b67 in _PyEval_Vector Python/ceval.c:5065 ROCm#172 0x3ffa2c8aec1 in _PyFunction_Vectorcall Objects/call.c:342 ROCm#173 0x3ffa2c8ab15 in PyVectorcall_Call Objects/call.c:255 ROCm#174 0x3ffa2c8ac65 in _PyObject_Call Objects/call.c:290 ROCm#175 0x3ffa2c8ada9 in PyObject_Call Objects/call.c:317 ROCm#176 0x3ffa2e059c7 in do_call_core Python/ceval.c:5943 ROCm#177 0x3ffa2dffd39 in _PyEval_EvalFrameDefault Python/ceval.c:4277 ROCm#178 0x3ffa2df052b in _PyEval_EvalFrame Include/internal/pycore_ceval.h:46 ROCm#179 0x3ffa2e02b67 in _PyEval_Vector Python/ceval.c:5065 ROCm#180 0x3ffa2c8aec1 in _PyFunction_Vectorcall Objects/call.c:342 ROCm#181 0x3ffa2df00a9 in _PyObject_VectorcallTstate Include/cpython/abstract.h:114 ROCm#182 0x3ffa2df013d in PyObject_Vectorcall Include/cpython/abstract.h:123 ROCm#183 0x3ffa2e05447 in call_function Python/ceval.c:5891 ROCm#184 0x3ffa2dff905 in _PyEval_EvalFrameDefault Python/ceval.c:4213 ROCm#185 0x3ffa2df052b in _PyEval_EvalFrame Include/internal/pycore_ceval.h:46 ROCm#186 0x3ffa2e02b67 in _PyEval_Vector Python/ceval.c:5065 ROCm#187 0x3ffa2c8aec1 in _PyFunction_Vectorcall Objects/call.c:342 ROCm#188 0x3ffa2df00a9 in _PyObject_VectorcallTstate Include/cpython/abstract.h:114 ROCm#189 0x3ffa2df013d in PyObject_Vectorcall Include/cpython/abstract.h:123 ROCm#190 0x3ffa2e05447 in call_function Python/ceval.c:5891 ROCm#191 0x3ffa2dffa57 in _PyEval_EvalFrameDefault Python/ceval.c:4231 ROCm#192 0x3ffa2df052b in _PyEval_EvalFrame Include/internal/pycore_ceval.h:46 ROCm#193 0x3ffa2e02b67 in _PyEval_Vector Python/ceval.c:5065 ROCm#194 0x3ffa2c8aec1 in _PyFunction_Vectorcall Objects/call.c:342 ROCm#195 0x3ffa2c8ab15 in PyVectorcall_Call Objects/call.c:255 ROCm#196 0x3ffa2c8ac65 in _PyObject_Call Objects/call.c:290 ROCm#197 0x3ffa2c8ada9 in PyObject_Call Objects/call.c:317 ROCm#198 0x3ffa2e059c7 in do_call_core Python/ceval.c:5943 ROCm#199 0x3ffa2dffd39 in _PyEval_EvalFrameDefault Python/ceval.c:4277 ROCm#200 0x3ffa2df052b in _PyEval_EvalFrame Include/internal/pycore_ceval.h:46 ROCm#201 0x3ffa2e02b67 in _PyEval_Vector Python/ceval.c:5065 ROCm#202 0x3ffa2c8aec1 in _PyFunction_Vectorcall Objects/call.c:342 ROCm#203 0x3ffa2df00a9 in _PyObject_VectorcallTstate Include/cpython/abstract.h:114 ROCm#204 0x3ffa2df013d in PyObject_Vectorcall Include/cpython/abstract.h:123 ROCm#205 0x3ffa2e05447 in call_function Python/ceval.c:5891 ROCm#206 0x3ffa2dff779 in _PyEval_EvalFrameDefault Python/ceval.c:4181 ROCm#207 0x3ffa2df052b in _PyEval_EvalFrame Include/internal/pycore_ceval.h:46 ROCm#208 0x3ffa2e02b67 in _PyEval_Vector Python/ceval.c:5065 ROCm#209 0x3ffa2c8aec1 in _PyFunction_Vectorcall Objects/call.c:342 ROCm#210 0x3ffa2c8e941 in _PyObject_VectorcallTstate Include/cpython/abstract.h:114 ROCm#211 0x3ffa2c8eddd in method_vectorcall Objects/classobject.c:53 ROCm#212 0x3ffa2df00a9 in _PyObject_VectorcallTstate Include/cpython/abstract.h:114 ROCm#213 0x3ffa2df013d in PyObject_Vectorcall Include/cpython/abstract.h:123 ROCm#214 0x3ffa2e05447 in call_function Python/ceval.c:5891 ROCm#215 0x3ffa2dff779 in _PyEval_EvalFrameDefault Python/ceval.c:4181 ROCm#216 0x3ffa2df052b in _PyEval_EvalFrame Include/internal/pycore_ceval.h:46 ROCm#217 0x3ffa2e02b67 in _PyEval_Vector Python/ceval.c:5065 ROCm#218 0x3ffa2c8aec1 in _PyFunction_Vectorcall Objects/call.c:342 ROCm#219 0x3ffa2c8a695 in _PyObject_FastCallDictTstate Objects/call.c:153 ROCm#220 0x3ffa2c8b271 in _PyObject_Call_Prepend Objects/call.c:431 ROCm#221 0x3ffa2d3f307 in slot_tp_call Objects/typeobject.c:7494 ROCm#222 0x3ffa2c8a933 in _PyObject_MakeTpCall Objects/call.c:215 ROCm#223 0x3ffa2df0081 in _PyObject_VectorcallTstate Include/cpython/abstract.h:112 ROCm#224 0x3ffa2df013d in PyObject_Vectorcall Include/cpython/abstract.h:123 ROCm#225 0x3ffa2e05447 in call_function Python/ceval.c:5891 ROCm#226 0x3ffa2dffa57 in _PyEval_EvalFrameDefault Python/ceval.c:4231 ROCm#227 0x3ffa2df052b in _PyEval_EvalFrame Include/internal/pycore_ceval.h:46 ROCm#228 0x3ffa2e02b67 in _PyEval_Vector Python/ceval.c:5065 ROCm#229 0x3ffa2c8aec1 in _PyFunction_Vectorcall Objects/call.c:342 ROCm#230 0x3ffa2c8ab15 in PyVectorcall_Call Objects/call.c:255 ROCm#231 0x3ffa2c8ac65 in _PyObject_Call Objects/call.c:290 ROCm#232 0x3ffa2c8ada9 in PyObject_Call Objects/call.c:317 ROCm#233 0x3ffa2e059c7 in do_call_core Python/ceval.c:5943 ROCm#234 0x3ffa2dffd39 in _PyEval_EvalFrameDefault Python/ceval.c:4277 ROCm#235 0x3ffa2df052b in _PyEval_EvalFrame Include/internal/pycore_ceval.h:46 ROCm#236 0x3ffa2e02b67 in _PyEval_Vector Python/ceval.c:5065 ROCm#237 0x3ffa2c8aec1 in _PyFunction_Vectorcall Objects/call.c:342 ROCm#238 0x3ffa2df00a9 in _PyObject_VectorcallTstate Include/cpython/abstract.h:114 ROCm#239 0x3ffa2df013d in PyObject_Vectorcall Include/cpython/abstract.h:123 ROCm#240 0x3ffa2e05447 in call_function Python/ceval.c:5891 ROCm#241 0x3ffa2dff779 in _PyEval_EvalFrameDefault Python/ceval.c:4181 ROCm#242 0x3ffa2df052b in _PyEval_EvalFrame Include/internal/pycore_ceval.h:46 ROCm#243 0x3ffa2e02b67 in _PyEval_Vector Python/ceval.c:5065 ROCm#244 0x3ffa2c8aec1 in _PyFunction_Vectorcall Objects/call.c:342 ROCm#245 0x3ffa2c8e941 in _PyObject_VectorcallTstate Include/cpython/abstract.h:114 ROCm#246 0x3ffa2c8eddd in method_vectorcall Objects/classobject.c:53 ROCm#247 0x3ffa2df00a9 in _PyObject_VectorcallTstate Include/cpython/abstract.h:114 ROCm#248 0x3ffa2df013d in PyObject_Vectorcall Include/cpython/abstract.h:123 ROCm#249 0x3ffa2e05447 in call_function Python/ceval.c:5891 ROCm#250 0x3ffa2dff779 in _PyEval_EvalFrameDefault Python/ceval.c:4181 ROCm#251 0x3ffa2df052b in _PyEval_EvalFrame Include/internal/pycore_ceval.h:46 ROCm#252 0x3ffa2e02b67 in _PyEval_Vector Python/ceval.c:5065 ROCm#253 0x3ffa2c8aec1 in _PyFunction_Vectorcall Objects/call.c:342 ROCm#254 0x3ffa2c8a695 in _PyObject_FastCallDictTstate Objects/call.c:153 ROCm#255 0x3ffa2c8b271 in _PyObject_Call_Prepend Objects/call.c:431 ROCm#256 0x3ffa2d3f307 in slot_tp_call Objects/typeobject.c:7494 ROCm#257 0x3ffa2c8a933 in _PyObject_MakeTpCall Objects/call.c:215 0x61000013d790 is located 80 bytes inside of 192-byte region [0x61000013d740,0x61000013d800) freed by thread T0 here: #0 0x3ffa3237de5 in operator delete(void*) /var/tmp/portage/sys-devel/gcc-11.3.1_p20230303/work/gcc-11-20230303/libsanitizer/asan/asan_new_delete.cpp:160 ROCm#1 0x3ff8e7e3221 in c10::TensorImpl::~TensorImpl() /home/user/pytorch/c10/core/TensorImpl.cpp:75 previously allocated by thread T0 here: #0 0x3ffa323734f in operator new(unsigned long) /var/tmp/portage/sys-devel/gcc-11.3.1_p20230303/work/gcc-11-20230303/libsanitizer/asan/asan_new_delete.cpp:99 ROCm#1 0x3ff4aeeb3d1 in c10::intrusive_ptr<c10::TensorImpl, c10::detail::intrusive_target_default_null_type<c10::TensorImpl> > c10::intrusive_ptr<c10::TensorImpl, c10::detail::intrusive_target_default_nul l_type<c10::TensorImpl> >::make<c10::intrusive_ptr<c10::StorageImpl, c10::detail::intrusive_target_default_null_type<c10::StorageImpl> >, c10::DispatchKeySet&, caffe2::TypeMeta&>(c10::intrusive_ptr<c10::S torageImpl, c10::detail::intrusive_target_default_null_type<c10::StorageImpl> >&&, c10::DispatchKeySet&, caffe2::TypeMeta&) /home/user/pytorch/c10/util/intrusive_ptr.h:498 ROCm#2 0x3ff76f79e17 (/home/user/pytorch/build/lib.linux-s390x-cpython-310/torch/lib/libtorch_cpu.so+0x2fb79e17) SUMMARY: AddressSanitizer: heap-use-after-free /home/user/pytorch/c10/core/SymInt.h:154 in c10::SymInt::is_heap_allocated() const Shadow bytes around the buggy address: 0x100c2000027aa0: fa fa fa fa fa fa fa fa fd fd fd fd fd fd fd fd 0x100c2000027ab0: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd 0x100c2000027ac0: fa fa fa fa fa fa fa fa fd fd fd fd fd fd fd fd 0x100c2000027ad0: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd 0x100c2000027ae0: fa fa fa fa fa fa fa fa fd fd fd fd fd fd fd fd =>0x100c2000027af0: fd fd[fd]fd fd fd fd fd fd fd fd fd fd fd fd fd 0x100c2000027b00: fa fa fa fa fa fa fa fa 00 00 00 00 00 00 00 00 0x100c2000027b10: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x100c2000027b20: fa fa fa fa fa fa fa fa 00 00 00 00 00 00 00 00 0x100c2000027b30: 00 00 00 00 04 fa fa fa fa fa fa fa fa fa fa fa 0x100c2000027b40: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa Shadow byte legend (one shadow byte represents 8 application bytes): Addressable: 00 Partially addressable: 01 02 03 04 05 06 07 Heap left redzone: fa Freed heap region: fd Stack left redzone: f1 Stack mid redzone: f2 Stack right redzone: f3 Stack after return: f5 Stack use after scope: f8 Global redzone: f9 Global init order: f6 Poisoned by user: f7 Container overflow: fc Array cookie: ac Intra object redzone: bb ASan internal: fe Left alloca redzone: ca Right alloca redzone: cb Shadow gap: cc ==1115867==ABORTING ``` </details> <details> <summary>Additional backtraces (not full)</summary> Memory deallocation: ``` #0 operator delete (ptr=0x61000013d740) at /var/tmp/portage/sys-devel/gcc-11.3.1_p20230303/work/gcc-11-20230303/libsanitizer/asan/asan_new_delete.cpp:160 ROCm#1 0x000003ffa77e3222 in c10::TensorImpl::~TensorImpl (this=0x61000013d740) at /home/user/pytorch/c10/core/TensorImpl.cpp:75 ROCm#2 0x000003ff63e76e8c in c10::intrusive_ptr<c10::TensorImpl, c10::UndefinedTensorImpl>::reset_ (this=0x3ffd7ec8230) at /home/user/pytorch/c10/util/intrusive_ptr.h:291 ROCm#3 0x000003ff63e76910 in c10::intrusive_ptr<c10::TensorImpl, c10::UndefinedTensorImpl>::~intrusive_ptr (this=0x3ffd7ec8230) at /home/user/pytorch/c10/util/intrusive_ptr.h:370 ROCm#4 0x000003ff63e67240 in at::TensorBase::~TensorBase (this=0x3ffd7ec8230) at /home/user/pytorch/aten/src/ATen/core/TensorBase.h:80 ROCm#5 0x000003ff63e85ee0 in at::Tensor::~Tensor (this=0x3ffd7ec8230) at aten/src/ATen/core/TensorBody.h:90 ROCm#6 0x000003ff63f67304 in resize__functionalization (dispatchKeySet=..., self=..., size=..., memory_format=...) at /home/user/pytorch/aten/src/ATen/FunctionalizeFallbackKernel.cpp:173 ROCm#7 0x000003ff63f89258 in c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor const& (c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<long>, c10::optional<c10::MemoryFormat>), &(resize__functionalization(c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<long>, c10::optional<c10::MemoryFormat>))>, at::Tensor const&, c10::guts::typelist::typelist<c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<long>, c10::optional<c10::MemoryFormat> > >::operator()(c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<long>, c10::optional<c10::MemoryFormat>) ( this=0x6030000390a0, args=..., args=..., args=..., args=...) at /home/user/pytorch/aten/src/ATen/core/boxing/impl/WrapFunctionIntoFunctor.h:13 ROCm#8 c10::impl::wrap_kernel_functor_unboxed_<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor const& (c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<long>, c10::optional<c10::MemoryFormat>), &(resize__functionalization(c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<long>, c10::optional<c10::MemoryFormat>))>, at::Tensor const&, c10::guts::typelist::typelist<c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<long>, c10::optional<c10::MemoryFormat> > >, at::Tensor const& (c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<long>, c10::optional<c10::MemoryFormat>)>::call(c10::OperatorKernel*, c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<long>, c10::optional<c10::MemoryFormat>) (functor=0x6030000390a0, dispatchKeySet=..., args=..., args=..., args=...) at /home/user/pytorch/aten/src/ATen/core/boxing/impl/make_boxed_from_unboxed_functor.h:480 ROCm#9 0x000003ff6aca560a in c10::callUnboxedKernelFunction<at::Tensor const&, at::Tensor const&, c10::ArrayRef<long>, c10::optional<c10::MemoryFormat> > ( unboxed_kernel_func=0x3ff63f88a80 <c10::impl::wrap_kernel_functor_unboxed_<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor const& (c10::DispatchKeySet, at::Tenso r const&, c10::ArrayRef<long>, c10::optional<c10::MemoryFormat>), &(resize__functionalization(c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<long>, c10::optional<c10::MemoryFormat>))>, at::Tensor const&, c10::guts::typelist::typelist<c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<long>, c10::optional<c10::MemoryFormat> > >, at::Tensor const& (c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<long>, c10::optional<c10::MemoryFormat>)>::call(c10::OperatorKernel*, c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<long>, c10::optional<c10::MemoryFormat>)>, functor=0x6030000390a0, dispatchKeySet=..., args=..., args=..., args=...) at /home/user/pytorch/aten/src/ATen/core/boxing/KernelFunction_impl.h:50 ROCm#10 0x000003ff6aca715c in c10::KernelFunction::call<at::Tensor const&, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat> > (this=0x6210005e1b28, opHandle=..., dispatchKeySet=..., args=..., args=..., args=...) at /home/user/pytorch/aten/src/ATen/core/boxing/KernelFunction_impl.h:96 ROCm#11 c10::Dispatcher::redispatch<at::Tensor const&, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat> >(c10::TypedOperatorHandle<at::Tensor const& (at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat>)> const&, c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat>) const ( this=0x3ff919400e0 <c10::Dispatcher::realSingleton()::_singleton>, op=..., currentDispatchKeySet=..., args=..., args=..., args=...) at /home/user/pytorch/aten/src/ATen/core/dispatch/Dispatcher.h:656 ROCm#12 0x000003ff6a82006c in c10::TypedOperatorHandle<at::Tensor const& (at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat>)>::redispatch(c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat>) const ( this=0x3ff919a07e0 <at::_ops::resize_::redispatch(c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat>)::op>, currentDispatchKeySet=..., args=..., args=..., args=...) at /home/user/pytorch/aten/src/ATen/core/dispatch/Dispatcher.h:492 ROCm#13 at::_ops::resize_::redispatch (dispatchKeySet=..., self=..., size=..., memory_format=...) at /home/user/pytorch/build/aten/src/ATen/Operators_4.cpp:2144 ROCm#14 0x000003ff861d5e08 in at::redispatch::resize__symint (dispatchKeySet=..., self=..., size=..., memory_format=...) at aten/src/ATen/RedispatchFunctions.h:2847 ROCm#15 0x000003ff861b579e in torch::ADInplaceOrView::resize_ (ks=..., self=..., size=..., optional_memory_format=...) at /home/user/pytorch/torch/csrc/autograd/VariableTypeManual.cpp:401 ``` Memory access: ``` #0 c10::SymInt::maybe_as_int (this=0x61000013d790) at /home/user/pytorch/c10/core/SymInt.h:215 ROCm#1 0x000003ff734d0a6e in c10::SymInt::sym_eq (this=0x61000013d790, sci=...) at /home/user/pytorch/c10/core/SymInt.cpp:69 ROCm#2 0x000003ff5f6ab0be in c10::SymInt::operator== (this=0x61000013d790, o=...) at /home/user/pytorch/c10/core/SymInt.h:177 ROCm#3 0x000003ff5f6aaede in std::__equal<false>::equal<c10::SymInt const*, c10::SymInt const*> (__first1=0x61000013d790, __last1=0x61000013d7a0, __first2=0x602000015c30) at /usr/lib/gcc/s390x-ibm-linux-gnu/11/include/g++-v11/bits/stl_algobase.h:1162 ROCm#4 0x000003ff5f6aae4c in std::__equal_aux1<c10::SymInt const*, c10::SymInt const*> (__first1=0x61000013d790, __last1=0x61000013d7a0, __first2=0x602000015c30) at /usr/lib/gcc/s390x-ibm-linux-gnu/11/include/g++-v11/bits/stl_algobase.h:1211 ROCm#5 0x000003ff5f6aae06 in std::__equal_aux<c10::SymInt const*, c10::SymInt const*> (__first1=0x61000013d790, __last1=0x61000013d7a0, __first2=0x602000015c30) at /usr/lib/gcc/s390x-ibm-linux-gnu/11/include/g++-v11/bits/stl_algobase.h:1219 ROCm#6 0x000003ff5f6aad98 in std::equal<c10::SymInt const*, c10::SymInt const*> (__first1=0x61000013d790, __last1=0x61000013d7a0, __first2=0x602000015c30) at /usr/lib/gcc/s390x-ibm-linux-gnu/11/include/g++-v11/bits/stl_algobase.h:1556 ROCm#7 0x000003ff2ff3c772 in c10::ArrayRef<c10::SymInt>::equals (this=0x3ffed7c9900, RHS=...) at /home/user/pytorch/c10/util/ArrayRef.h:188 ROCm#8 0x000003ff31891bc2 in c10::operator!=<c10::SymInt> (a1=..., a2=...) at /home/user/pytorch/c10/util/ArrayRef.h:341 ROCm#9 0x000003ff51eb5800 in torch::ADInplaceOrView::resize_ (ks=..., self=..., size=..., optional_memory_format=...) at /home/user/pytorch/torch/csrc/autograd/VariableTypeManual.cpp:408 ROCm#10 0x000003ff51ee59c8 in c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor const& (c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c 10::MemoryFormat>), &torch::ADInplaceOrView::resize_>, at::Tensor const&, c10::guts::typelist::typelist<c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat> > >::operator()(c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat>) (this=0x6030007dca40, args=..., args=..., args=..., args=...) at /home/user/pytorch/aten/src/ATen/core/boxing/impl/WrapFunctionIntoFunctor.h:13 ROCm#11 c10::impl::wrap_kernel_functor_unboxed_<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor const& (c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt >, c10::optional<c10::MemoryFormat>), &torch::ADInplaceOrView::resize_>, at::Tensor const&, c10::guts::typelist::typelist<c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional< c10::MemoryFormat> > >, at::Tensor const& (c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat>)>::call(c10::OperatorKernel*, c10::DispatchKeySet, at::Tenso r const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat>) (functor=0x6030007dca40, dispatchKeySet=..., args=..., args=..., args=...) at /home/user/pytorch/aten/src/ATen/core/boxing/impl/make_boxed_from_unboxed_functor.h:480 ROCm#12 0x000003ff369a512a in c10::callUnboxedKernelFunction<at::Tensor const&, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat> > ( unboxed_kernel_func=0x3ff51ee51f0 <c10::impl::wrap_kernel_functor_unboxed_<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor const& (c10::DispatchKeySet, at::Tenso r const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat>), &torch::ADInplaceOrView::resize_>, at::Tensor const&, c10::guts::typelist::typelist<c10::DispatchKeySet, at::Tensor const&, c10::Ar rayRef<c10::SymInt>, c10::optional<c10::MemoryFormat> > >, at::Tensor const& (c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat>)>::call(c10::OperatorKern el*, c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat>)>, functor=0x6030007dca40, dispatchKeySet=..., args=..., args=..., args=...) at /home/user/pytorch/aten/src/ATen/core/boxing/KernelFunction_impl.h:50 ROCm#13 0x000003ff369a6e90 in c10::KernelFunction::call<at::Tensor const&, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat> > (this=0x6210005e1bc8, opHandle=..., dispatchKeySet=..., args=..., args=..., args=...) at /home/user/pytorch/aten/src/ATen/core/boxing/KernelFunction_impl.h:90 ROCm#14 c10::Dispatcher::redispatch<at::Tensor const&, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat> >(c10::TypedOperatorHandle<at::Tensor const& (at::Tensor const&, c10::Arr ayRef<c10::SymInt>, c10::optional<c10::MemoryFormat>)> const&, c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat>) const ( this=0x3ff5d6400e0 <c10::Dispatcher::realSingleton()::_singleton>, op=..., currentDispatchKeySet=..., args=..., args=..., args=...) at /home/user/pytorch/aten/src/ATen/core/dispatch/Dispatcher.h:656 ROCm#15 0x000003ff3652006c in c10::TypedOperatorHandle<at::Tensor const& (at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat>)>::redispatch(c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat>) const ( this=0x3ff5d6a07e0 <at::_ops::resize_::redispatch(c10::DispatchKeySet, at::Tensor const&, c10::ArrayRef<c10::SymInt>, c10::optional<c10::MemoryFormat>)::op>, currentDispatchKeySet=..., args=..., args=..., args=...) at /home/user/pytorch/aten/src/ATen/core/dispatch/Dispatcher.h:492 ROCm#16 at::_ops::resize_::redispatch (dispatchKeySet=..., self=..., size=..., memory_format=...) at /home/user/pytorch/build/aten/src/ATen/Operators_4.cpp:2144 ROCm#17 0x000003ff51ed5e08 in at::redispatch::resize__symint (dispatchKeySet=..., self=..., size=..., memory_format=...) at aten/src/ATen/RedispatchFunctions.h:2847 ROCm#18 0x000003ff51ebbb68 in torch::autograd::VariableType::(anonymous namespace)::resize_ (ks=..., self=..., size=..., optional_memory_format=...) at /home/user/pytorch/torch/csrc/autograd/VariableTypeManual.cpp:243 ``` </details> Pull Request resolved: pytorch#101064 Approved by: https://github.com/Skylion007, https://github.com/albanD
lcskrishna
pushed a commit
to lcskrishna/pytorch
that referenced
this pull request
May 29, 2023
3 disabled functions are attempting out of bounds reads. Disable them until sleef library is fixed. <details> <summary>ASAN report</summary> ``` ================================================================= ==2030580==ERROR: AddressSanitizer: global-buffer-overflow on address 0x03ff70f54570 at pc 0x03ff6704e960 bp 0x03ffce128940 sp 0x03ffce128930 READ of size 4 at 0x03ff70f54570 thread T0 #0 0x3ff6704e95f in vgather_vf_p_vi2 /home/user/pytorch/third_party/sleef/src/arch/helpers390x_128.h:129 ROCm#1 0x3ff6704e95f in rempif /home/user/pytorch/third_party/sleef/src/libm/sleefsimdsp.c:550 ROCm#2 0x3ff6704e95f in Sleef_cosf4_u10vxe2 /home/user/pytorch/third_party/sleef/src/libm/sleefsimdsp.c:1021 ROCm#3 0x3ff67029cfb in Sleef_cosf4_u10 /home/user/pytorch/build/sleef/src/libm/disps390x_128.c:182 ROCm#4 0x3ff55d21941 in at::vec::ZVECTOR::Vectorized<float, void> at::vec::ZVECTOR::Vectorized<float, void>::mapSleef<float __vector(4) const (*)(float __vector(4)), double __vector(2) const (*)(double __ vector(2)), float, 0>(float __vector(4) const (*)(float __vector(4)), double __vector(2) const (*)(double __vector(2))) const /home/user/pytorch/aten/src/ATen/cpu/vec/vec256/zarch/vec256_zarch.h:991 ROCm#5 0x3ff5689ad01 in at::vec::ZVECTOR::Vectorized<float, void>::cos() const /home/user/pytorch/aten/src/ATen/cpu/vec/vec256/zarch/vec256_zarch.h:1074 ROCm#6 0x3ff5685df97 in at::vml::ZVECTOR::vcos<float>(float*, float const*, long)::{lambda(at::vec::ZVECTOR::Vectorized<float, void>)ROCm#1}::operator()(at::vec::ZVECTOR::Vectorized<float, void>) const /home/ user/pytorch/aten/src/ATen/cpu/vml.h:71 ROCm#7 0x3ff5689b691 in void at::vec::map<float, at::vml::ZVECTOR::vcos<float>(float*, float const*, long)::{lambda(at::vec::ZVECTOR::Vectorized<float, void>)ROCm#1}, 0>(at::vml::ZVECTOR::vcos<float>(float*, float const*, long)::{lambda(at::vec::ZVECTOR::Vectorized<float, void>)ROCm#1} const&, float*, float const*, long) /home/user/pytorch/aten/src/ATen/cpu/vec/functional_base.h:239 ROCm#8 0x3ff5685e0df in void at::vml::ZVECTOR::vcos<float>(float*, float const*, long) /home/user/pytorch/aten/src/ATen/cpu/vml.h:71 ROCm#9 0x3ff563fdde3 in operator() /home/user/pytorch/aten/src/ATen/native/cpu/UnaryOpsKernel.cpp:770 ROCm#10 0x3ff5648e4a3 in operator() /home/user/pytorch/aten/src/ATen/TensorIterator.h:406 ROCm#11 0x3ff5663cae1 in callback_fn<at::TensorIteratorBase::loop_2d_from_1d<at::native::ZVECTOR::cos_kernel(at::TensorIteratorBase&)::<lambda()>::<lambda()>::<lambda(char**, const int64_t*, int64_t)> >(c onst at::native::ZVECTOR::cos_kernel(at::TensorIteratorBase&)::<lambda()>::<lambda()>::<lambda(char**, const int64_t*, int64_t)>&)::<lambda(char**, const int64_t*, int64_t, int64_t)> > /home/user/pytorch/ c10/util/FunctionRef.h:43 ROCm#12 0x3ff4d45a933 in c10::function_ref<void (char**, long const*, long, long)>::operator()(char**, long const*, long, long) const /home/user/pytorch/c10/util/FunctionRef.h:64 ROCm#13 0x3ff4d455133 in at::internal::serial_for_each(c10::ArrayRef<long>, c10::ArrayRef<long>, char**, unsigned long, c10::function_ref<void (char**, long const*, long, long)>, at::Range) /home/user/pyt orch/aten/src/ATen/TensorIteratorInternal.h:52 ROCm#14 0x3ff4d43b703 in at::TensorIteratorBase::serial_for_each(c10::function_ref<void (char**, long const*, long, long)>, at::Range) const /home/user/pytorch/aten/src/ATen/TensorIterator.cpp:777 ROCm#15 0x3ff4d43ab59 in at::TensorIteratorBase::for_each(c10::function_ref<void (char**, long const*, long, long)>, long) /home/user/pytorch/aten/src/ATen/TensorIterator.cpp:749 ROCm#16 0x3ff5648e851 in for_each<at::native::ZVECTOR::cos_kernel(at::TensorIteratorBase&)::<lambda()>::<lambda()>::<lambda(char**, const int64_t*, int64_t)> > /home/user/pytorch/aten/src/ATen/TensorItera tor.h:421 ROCm#17 0x3ff563fe5f9 in operator() /home/user/pytorch/aten/src/ATen/native/cpu/UnaryOpsKernel.cpp:770 ROCm#18 0x3ff56400915 in operator() /home/user/pytorch/aten/src/ATen/native/cpu/UnaryOpsKernel.cpp:770 ROCm#19 0x3ff56400f1d in at::native::ZVECTOR::cos_kernel(at::TensorIteratorBase&) /home/user/pytorch/aten/src/ATen/native/cpu/UnaryOpsKernel.cpp:770 ROCm#20 0x3ff4f303007 in void at::native::DispatchStub<void (*)(at::TensorIteratorBase&), at::native::cos_stub>::operator()<at::native::structured_cos_out&>(c10::DeviceType, at::native::structured_cos_out &) /home/user/pytorch/aten/src/ATen/native/DispatchStub.h:158 ROCm#21 0x3ff4f2edb3f in at::native::structured_cos_out::impl(at::Tensor const&, at::Tensor const&) /home/user/pytorch/aten/src/ATen/native/UnaryOps.cpp:330 ROCm#22 0x3ff526ef739 in wrapper_CPU_cos /home/user/pytorch/build/aten/src/ATen/RegisterCPU.cpp:4307 ROCm#23 0x3ff52c651d9 in operator() /home/user/pytorch/aten/src/ATen/core/boxing/impl/WrapFunctionIntoFunctor.h:13 ROCm#24 0x3ff52c651d9 in call /home/user/pytorch/aten/src/ATen/core/boxing/impl/make_boxed_from_unboxed_functor.h:463 ROCm#25 0x3ff5076df2f in at::Tensor c10::callUnboxedKernelFunction<at::Tensor, at::Tensor const&>(void*, c10::OperatorKernel*, c10::DispatchKeySet, at::Tensor const&) /home/user/pytorch/aten/src/ATen/core /boxing/KernelFunction_impl.h:50 ROCm#26 0x3ff5009a93f in at::Tensor c10::KernelFunction::call<at::Tensor, at::Tensor const&>(c10::OperatorHandle const&, c10::DispatchKeySet, at::Tensor const&) const /home/user/pytorch/aten/src/ATen/core /boxing/KernelFunction_impl.h:103 ROCm#27 0x3ff5009a93f in at::Tensor c10::Dispatcher::call<at::Tensor, at::Tensor const&>(c10::TypedOperatorHandle<at::Tensor (at::Tensor const&)> const&, at::Tensor const&) const /home/user/pytorch/aten/s rc/ATen/core/dispatch/Dispatcher.h:639 ROCm#28 0x3ff5009a93f in c10::TypedOperatorHandle<at::Tensor (at::Tensor const&)>::call(at::Tensor const&) const /home/user/pytorch/aten/src/ATen/core/dispatch/Dispatcher.h:487 ROCm#29 0x3ff5009a93f in at::_ops::cos::call(at::Tensor const&) /home/user/pytorch/build/aten/src/ATen/Operators_0.cpp:2215 ROCm#30 0x3ff7d813741 in at::Tensor::cos() const /home/user/pytorch/build/aten/src/ATen/core/TensorBody.h:2107 ROCm#31 0x3ff7dc0f2b7 in operator() /home/user/pytorch/torch/csrc/autograd/generated/python_torch_functions_2.cpp:2953 ROCm#32 0x3ff7dc0faf7 in THPVariable_cos /home/user/pytorch/torch/csrc/autograd/generated/python_torch_functions_2.cpp:2955 ROCm#33 0x3ffa5ef5ae1 in cfunction_call Objects/methodobject.c:543 ROCm#34 0x3ffa5e843f3 in _PyObject_Call Objects/call.c:305 ROCm#35 0x3ffa5e84483 in PyObject_Call Objects/call.c:317 ROCm#36 0x3ffa5feb50d in do_call_core Python/ceval.c:5915 ROCm#37 0x3ffa5fe6019 in _PyEval_EvalFrameDefault Python/ceval.c:4277 ROCm#38 0x3ffa5fd7aed in _PyEval_EvalFrame Include/internal/pycore_ceval.h:46 ROCm#39 0x3ffa5fe8ba9 in _PyEval_Vector Python/ceval.c:5065 ROCm#40 0x3ffa5e8459b in _PyFunction_Vectorcall Objects/call.c:342 ROCm#41 0x3ffa5e841fb in PyVectorcall_Call Objects/call.c:255 ROCm#42 0x3ffa5e84347 in _PyObject_Call Objects/call.c:290 ROCm#43 0x3ffa5e84483 in PyObject_Call Objects/call.c:317 ROCm#44 0x3ff7f87a393 in torch::impl::dispatch::PythonKernelHolder::operator()(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) /home/user/pytorch/ torch/csrc/utils/python_dispatch.cpp:175 ROCm#45 0x3ff7f8871a7 in c10::BoxedKernel::makeFromFunctor<torch::impl::dispatch::PythonKernelHolder>(std::unique_ptr<torch::impl::dispatch::PythonKernelHolder, std::default_delete<torch::impl::dispatch:: PythonKernelHolder> >)::{lambda(c10::OperatorKernel*, c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*)ROCm#1}::operator()(c10::OperatorKernel*, c10::Op eratorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const /home/user/pytorch/aten/src/ATen/core/boxing/BoxedKernel_impl.h:87 ROCm#46 0x3ff7f887261 in c10::BoxedKernel::makeFromFunctor<torch::impl::dispatch::PythonKernelHolder>(std::unique_ptr<torch::impl::dispatch::PythonKernelHolder, std::default_delete<torch::impl::dispatch:: PythonKernelHolder> >)::{lambda(c10::OperatorKernel*, c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*)ROCm#1}::_FUN(c10::OperatorKernel*, c10::Operator Handle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) /home/user/pytorch/aten/src/ATen/core/boxing/BoxedKernel_impl.h:86 ROCm#47 0x3ff7e0d10ab in c10::BoxedKernel::callBoxed(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const /home/user/pytorch/aten/src/ATen/core/b oxing/BoxedKernel_impl.h:41 ROCm#48 0x3ff7e0d1459 in c10::KernelFunction::callBoxed(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const /home/user/pytorch/aten/src/ATen/cor e/boxing/KernelFunction_impl.h:43 ROCm#49 0x3ff7f876421 in c10::Dispatcher::callBoxed(c10::OperatorHandle const&, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const /home/user/pytorch/aten/src/ATen/core/dispatch/Dispatcher.h:6 91 ROCm#50 0x3ff4d22bcdd in c10::OperatorHandle::callBoxed(std::vector<c10::IValue, std::allocator<c10::IValue> >*) const /home/user/pytorch/aten/src/ATen/core/dispatch/Dispatcher.h:417 ROCm#51 0x3ff65a092d5 in c10::OperatorHandle::callBoxed(std::vector<c10::IValue, std::allocator<c10::IValue> >&) const /home/user/pytorch/aten/src/ATen/core/dispatch/Dispatcher.h:421 ROCm#52 0x3ff65a05641 in operator() /home/user/pytorch/torch/csrc/jit/runtime/register_c10_ops.cpp:15 ROCm#53 0x3ff65a08cb5 in __invoke_impl<void, torch::jit::(anonymous namespace)::createOperatorFromC10(const c10::OperatorHandle&)::<lambda(torch::jit::Stack&)>&, std::vector<c10::IValue, std::allocator<c1 0::IValue> >&> /usr/lib/gcc/s390x-ibm-linux-gnu/11/include/g++-v11/bits/invoke.h:61 ROCm#54 0x3ff65a0897b in __invoke_r<void, torch::jit::(anonymous namespace)::createOperatorFromC10(const c10::OperatorHandle&)::<lambda(torch::jit::Stack&)>&, std::vector<c10::IValue, std::allocator<c10:: IValue> >&> /usr/lib/gcc/s390x-ibm-linux-gnu/11/include/g++-v11/bits/invoke.h:111 ROCm#55 0x3ff65a084e1 in _M_invoke /usr/lib/gcc/s390x-ibm-linux-gnu/11/include/g++-v11/bits/std_function.h:290 ROCm#56 0x3ff7eb2cb21 in std::function<void (std::vector<c10::IValue, std::allocator<c10::IValue> >&)>::operator()(std::vector<c10::IValue, std::allocator<c10::IValue> >&) const /usr/lib/gcc/s390x-ibm-lin ux-gnu/11/include/g++-v11/bits/std_function.h:590 ROCm#57 0x3ff7eb1b659 in torch::jit::Operation::operator()(std::vector<c10::IValue, std::allocator<c10::IValue> >&) /home/user/pytorch/aten/src/ATen/core/stack.h:41 ROCm#58 0x3ff7eb08449 in torch::jit::invokeOperatorFromPython(std::vector<std::shared_ptr<torch::jit::Operator>, std::allocator<std::shared_ptr<torch::jit::Operator> > > const&, pybind11::args, pybind11:: kwargs const&, c10::optional<c10::DispatchKey>) /home/user/pytorch/torch/csrc/jit/python/pybind_utils.cpp:764 ROCm#59 0x3ff7eb09d85 in torch::jit::_get_operation_for_overload_or_packet(std::vector<std::shared_ptr<torch::jit::Operator>, std::allocator<std::shared_ptr<torch::jit::Operator> > > const&, c10::Symbol, pybind11::args, pybind11::kwargs const&, bool, c10::optional<c10::DispatchKey>) /home/user/pytorch/torch/csrc/jit/python/pybind_utils.cpp:829 ROCm#60 0x3ff7e573eb9 in operator() /home/user/pytorch/torch/csrc/jit/python/init.cpp:1549 ROCm#61 0x3ff7e6728dd in call_impl<pybind11::object, torch::jit::initJITBindings(PyObject*)::<lambda(const string&, const string&)>::<lambda(pybind11::args, pybind11::kwargs)>&, 0, 1, pybind11::detail::vo id_type> /home/user/pytorch/third_party/pybind11/include/pybind11/cast.h:1439 ROCm#62 0x3ff7e64312f in call<pybind11::object, pybind11::detail::void_type, torch::jit::initJITBindings(PyObject*)::<lambda(const string&, const string&)>::<lambda(pybind11::args, pybind11::kwargs)>&> /h ome/user/pytorch/third_party/pybind11/include/pybind11/cast.h:1408 ROCm#63 0x3ff7e5da259 in operator() /home/user/pytorch/third_party/pybind11/include/pybind11/pybind11.h:249 ROCm#64 0x3ff7e5da441 in _FUN /home/user/pytorch/third_party/pybind11/include/pybind11/pybind11.h:224 ROCm#65 0x3ff7d317a1f in pybind11::cpp_function::dispatcher(_object*, _object*, _object*) /home/user/pytorch/third_party/pybind11/include/pybind11/pybind11.h:929 ROCm#66 0x3ffa5ef5ae1 in cfunction_call Objects/methodobject.c:543 ROCm#67 0x3ffa5e843f3 in _PyObject_Call Objects/call.c:305 ROCm#68 0x3ffa5e84483 in PyObject_Call Objects/call.c:317 ROCm#69 0x3ffa5feb50d in do_call_core Python/ceval.c:5915 ROCm#70 0x3ffa5fe6019 in _PyEval_EvalFrameDefault Python/ceval.c:4277 ROCm#71 0x3ffa5fd7aed in _PyEval_EvalFrame Include/internal/pycore_ceval.h:46 ROCm#72 0x3ffa5fe8ba9 in _PyEval_Vector Python/ceval.c:5065 ROCm#73 0x3ffa5e8459b in _PyFunction_Vectorcall Objects/call.c:342 ROCm#74 0x3ffa5e83d1f in _PyObject_FastCallDictTstate Objects/call.c:142 ROCm#75 0x3ffa5e84937 in _PyObject_Call_Prepend Objects/call.c:431 ROCm#76 0x3ffa5f2f577 in slot_tp_call Objects/typeobject.c:7494 ROCm#77 0x3ffa5e843f3 in _PyObject_Call Objects/call.c:305 ROCm#78 0x3ffa5e84483 in PyObject_Call Objects/call.c:317 ROCm#79 0x3ffa5feb7cf in do_call_core Python/ceval.c:5943 ROCm#80 0x3ffa5fe6019 in _PyEval_EvalFrameDefault Python/ceval.c:4277 ROCm#81 0x3ffa5fd7aed in _PyEval_EvalFrame Include/internal/pycore_ceval.h:46 ROCm#82 0x3ffa5fe8ba9 in _PyEval_Vector Python/ceval.c:5065 ROCm#83 0x3ffa5e8459b in _PyFunction_Vectorcall Objects/call.c:342 ROCm#84 0x3ffa5fd76a3 in _PyObject_VectorcallTstate Include/cpython/abstract.h:114 ROCm#85 0x3ffa5fd772f in PyObject_Vectorcall Include/cpython/abstract.h:123 ROCm#86 0x3ffa5feb289 in call_function Python/ceval.c:5891 ROCm#87 0x3ffa5fe5c3b in _PyEval_EvalFrameDefault Python/ceval.c:4213 ROCm#88 0x3ffa5fd7aed in _PyEval_EvalFrame Include/internal/pycore_ceval.h:46 ROCm#89 0x3ffa5fe8ba9 in _PyEval_Vector Python/ceval.c:5065 ROCm#90 0x3ffa5e8459b in _PyFunction_Vectorcall Objects/call.c:342 ROCm#91 0x3ffa5e841fb in PyVectorcall_Call Objects/call.c:255 ROCm#92 0x3ffa5e84347 in _PyObject_Call Objects/call.c:290 ROCm#93 0x3ffa5e84483 in PyObject_Call Objects/call.c:317 ROCm#94 0x3ffa5feb7cf in do_call_core Python/ceval.c:5943 ROCm#95 0x3ffa5fe6019 in _PyEval_EvalFrameDefault Python/ceval.c:4277 ROCm#96 0x3ffa5fd7aed in _PyEval_EvalFrame Include/internal/pycore_ceval.h:46 ROCm#97 0x3ffa5fe8ba9 in _PyEval_Vector Python/ceval.c:5065 ROCm#98 0x3ffa5e8459b in _PyFunction_Vectorcall Objects/call.c:342 ROCm#99 0x3ffa5e841fb in PyVectorcall_Call Objects/call.c:255 ROCm#100 0x3ffa5e84347 in _PyObject_Call Objects/call.c:290 ROCm#101 0x3ffa5e84483 in PyObject_Call Objects/call.c:317 ROCm#102 0x3ff7f87a393 in torch::impl::dispatch::PythonKernelHolder::operator()(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) /home/user/pytorch /torch/csrc/utils/python_dispatch.cpp:175 ROCm#103 0x3ff7f8871a7 in c10::BoxedKernel::makeFromFunctor<torch::impl::dispatch::PythonKernelHolder>(std::unique_ptr<torch::impl::dispatch::PythonKernelHolder, std::default_delete<torch::impl::dispatch: :PythonKernelHolder> >)::{lambda(c10::OperatorKernel*, c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*)ROCm#1}::operator()(c10::OperatorKernel*, c10::O peratorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const /home/user/pytorch/aten/src/ATen/core/boxing/BoxedKernel_impl.h:87 ROCm#104 0x3ff7f887261 in c10::BoxedKernel::makeFromFunctor<torch::impl::dispatch::PythonKernelHolder>(std::unique_ptr<torch::impl::dispatch::PythonKernelHolder, std::default_delete<torch::impl::dispatch: :PythonKernelHolder> >)::{lambda(c10::OperatorKernel*, c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*)ROCm#1}::_FUN(c10::OperatorKernel*, c10::Operato rHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) /home/user/pytorch/aten/src/ATen/core/boxing/BoxedKernel_impl.h:86 ROCm#105 0x3ff7e0d10ab in c10::BoxedKernel::callBoxed(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const /home/user/pytorch/aten/src/ATen/core/ boxing/BoxedKernel_impl.h:41 ROCm#106 0x3ff7e0d1459 in c10::KernelFunction::callBoxed(c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const /home/user/pytorch/aten/src/ATen/co re/boxing/KernelFunction_impl.h:43 ROCm#107 0x3ff7f876421 in c10::Dispatcher::callBoxed(c10::OperatorHandle const&, std::vector<c10::IValue, std::allocator<c10::IValue> >*) const /home/user/pytorch/aten/src/ATen/core/dispatch/Dispatcher.h: 691 ROCm#108 0x3ff4d22bcdd in c10::OperatorHandle::callBoxed(std::vector<c10::IValue, std::allocator<c10::IValue> >*) const /home/user/pytorch/aten/src/ATen/core/dispatch/Dispatcher.h:417 ROCm#109 0x3ff65a092d5 in c10::OperatorHandle::callBoxed(std::vector<c10::IValue, std::allocator<c10::IValue> >&) const /home/user/pytorch/aten/src/ATen/core/dispatch/Dispatcher.h:421 ROCm#110 0x3ff65a05641 in operator() /home/user/pytorch/torch/csrc/jit/runtime/register_c10_ops.cpp:15 ROCm#111 0x3ff65a08cb5 in __invoke_impl<void, torch::jit::(anonymous namespace)::createOperatorFromC10(const c10::OperatorHandle&)::<lambda(torch::jit::Stack&)>&, std::vector<c10::IValue, std::allocator<c 10::IValue> >&> /usr/lib/gcc/s390x-ibm-linux-gnu/11/include/g++-v11/bits/invoke.h:61 ROCm#112 0x3ff65a0897b in __invoke_r<void, torch::jit::(anonymous namespace)::createOperatorFromC10(const c10::OperatorHandle&)::<lambda(torch::jit::Stack&)>&, std::vector<c10::IValue, std::allocator<c10: :IValue> >&> /usr/lib/gcc/s390x-ibm-linux-gnu/11/include/g++-v11/bits/invoke.h:111 ROCm#113 0x3ff65a084e1 in _M_invoke /usr/lib/gcc/s390x-ibm-linux-gnu/11/include/g++-v11/bits/std_function.h:290 ROCm#114 0x3ff7eb2cb21 in std::function<void (std::vector<c10::IValue, std::allocator<c10::IValue> >&)>::operator()(std::vector<c10::IValue, std::allocator<c10::IValue> >&) const /usr/lib/gcc/s390x-ibm-li nux-gnu/11/include/g++-v11/bits/std_function.h:590 ROCm#115 0x3ff7eb1b659 in torch::jit::Operation::operator()(std::vector<c10::IValue, std::allocator<c10::IValue> >&) /home/user/pytorch/aten/src/ATen/core/stack.h:41 ROCm#116 0x3ff7eb08449 in torch::jit::invokeOperatorFromPython(std::vector<std::shared_ptr<torch::jit::Operator>, std::allocator<std::shared_ptr<torch::jit::Operator> > > const&, pybind11::args, pybind11: :kwargs const&, c10::optional<c10::DispatchKey>) /home/user/pytorch/torch/csrc/jit/python/pybind_utils.cpp:764 ROCm#117 0x3ff7eb09d85 in torch::jit::_get_operation_for_overload_or_packet(std::vector<std::shared_ptr<torch::jit::Operator>, std::allocator<std::shared_ptr<torch::jit::Operator> > > const&, c10::Symbol, pybind11::args, pybind11::kwargs const&, bool, c10::optional<c10::DispatchKey>) /home/user/pytorch/torch/csrc/jit/python/pybind_utils.cpp:829 ROCm#118 0x3ff7e573eb9 in operator() /home/user/pytorch/torch/csrc/jit/python/init.cpp:1549 ROCm#119 0x3ff7e6728dd in call_impl<pybind11::object, torch::jit::initJITBindings(PyObject*)::<lambda(const string&, const string&)>::<lambda(pybind11::args, pybind11::kwargs)>&, 0, 1, pybind11::detail::v oid_type> /home/user/pytorch/third_party/pybind11/include/pybind11/cast.h:1439 ROCm#120 0x3ff7e64312f in call<pybind11::object, pybind11::detail::void_type, torch::jit::initJITBindings(PyObject*)::<lambda(const string&, const string&)>::<lambda(pybind11::args, pybind11::kwargs)>&> / home/user/pytorch/third_party/pybind11/include/pybind11/cast.h:1408 ROCm#121 0x3ff7e5da259 in operator() /home/user/pytorch/third_party/pybind11/include/pybind11/pybind11.h:249 ROCm#122 0x3ff7e5da441 in _FUN /home/user/pytorch/third_party/pybind11/include/pybind11/pybind11.h:224 ROCm#123 0x3ff7d317a1f in pybind11::cpp_function::dispatcher(_object*, _object*, _object*) /home/user/pytorch/third_party/pybind11/include/pybind11/pybind11.h:929 ROCm#124 0x3ffa5ef5ae1 in cfunction_call Objects/methodobject.c:543 ROCm#125 0x3ffa5e843f3 in _PyObject_Call Objects/call.c:305 ROCm#126 0x3ffa5e84483 in PyObject_Call Objects/call.c:317 ROCm#127 0x3ffa5feb50d in do_call_core Python/ceval.c:5915 ROCm#128 0x3ffa5fe6019 in _PyEval_EvalFrameDefault Python/ceval.c:4277 ROCm#129 0x3ffa5fd7aed in _PyEval_EvalFrame Include/internal/pycore_ceval.h:46 ROCm#130 0x3ffa5fe8ba9 in _PyEval_Vector Python/ceval.c:5065 ROCm#131 0x3ffa5e8459b in _PyFunction_Vectorcall Objects/call.c:342 ROCm#132 0x3ffa5e83d1f in _PyObject_FastCallDictTstate Objects/call.c:142 ROCm#133 0x3ffa5e84937 in _PyObject_Call_Prepend Objects/call.c:431 ROCm#134 0x3ffa5f2f577 in slot_tp_call Objects/typeobject.c:7494 ROCm#135 0x3ffa5e843f3 in _PyObject_Call Objects/call.c:305 ROCm#136 0x3ffa5e84483 in PyObject_Call Objects/call.c:317 ROCm#137 0x3ffa5feb7cf in do_call_core Python/ceval.c:5943 ROCm#138 0x3ffa5fe6019 in _PyEval_EvalFrameDefault Python/ceval.c:4277 ROCm#139 0x3ffa5fd7aed in _PyEval_EvalFrame Include/internal/pycore_ceval.h:46 ROCm#140 0x3ffa5fe8ba9 in _PyEval_Vector Python/ceval.c:5065 ROCm#141 0x3ffa5e8459b in _PyFunction_Vectorcall Objects/call.c:342 ROCm#142 0x3ffa5e87d2b in _PyObject_VectorcallTstate Include/cpython/abstract.h:114 ROCm#143 0x3ffa5e882dd in method_vectorcall Objects/classobject.c:83 ROCm#144 0x3ffa5e836d3 in _PyObject_VectorcallTstate Include/cpython/abstract.h:114 ROCm#145 0x3ffa5e84b6f in _PyObject_CallFunctionVa Objects/call.c:485 ROCm#146 0x3ffa5e84f2d in callmethod Objects/call.c:557 ROCm#147 0x3ffa5e85039 in PyObject_CallMethod Objects/call.c:577 ROCm#148 0x3ff7f7efa05 in torch::handle_torch_function_no_python_arg_parser(c10::ArrayRef<pybind11::handle>, _object*, _object*, char const*, _object*, char const*, torch::TorchFunctionName) /home/user/py torch/torch/csrc/utils/python_arg_parser.cpp:338 ROCm#149 0x3ff7eb09b67 in torch::jit::_get_operation_for_overload_or_packet(std::vector<std::shared_ptr<torch::jit::Operator>, std::allocator<std::shared_ptr<torch::jit::Operator> > > const&, c10::Symbol, pybind11::args, pybind11::kwargs const&, bool, c10::optional<c10::DispatchKey>) /home/user/pytorch/torch/csrc/jit/python/pybind_utils.cpp:827 ROCm#150 0x3ff7e573eb9 in operator() /home/user/pytorch/torch/csrc/jit/python/init.cpp:1549 ROCm#151 0x3ff7e6728dd in call_impl<pybind11::object, torch::jit::initJITBindings(PyObject*)::<lambda(const string&, const string&)>::<lambda(pybind11::args, pybind11::kwargs)>&, 0, 1, pybind11::detail::v oid_type> /home/user/pytorch/third_party/pybind11/include/pybind11/cast.h:1439 ROCm#152 0x3ff7e64312f in call<pybind11::object, pybind11::detail::void_type, torch::jit::initJITBindings(PyObject*)::<lambda(const string&, const string&)>::<lambda(pybind11::args, pybind11::kwargs)>&> / home/user/pytorch/third_party/pybind11/include/pybind11/cast.h:1408 ROCm#153 0x3ff7e5da259 in operator() /home/user/pytorch/third_party/pybind11/include/pybind11/pybind11.h:249 ROCm#154 0x3ff7e5da441 in _FUN /home/user/pytorch/third_party/pybind11/include/pybind11/pybind11.h:224 ROCm#155 0x3ff7d317a1f in pybind11::cpp_function::dispatcher(_object*, _object*, _object*) /home/user/pytorch/third_party/pybind11/include/pybind11/pybind11.h:929 ROCm#156 0x3ffa5ef5ae1 in cfunction_call Objects/methodobject.c:543 ROCm#157 0x3ffa5e843f3 in _PyObject_Call Objects/call.c:305 ROCm#158 0x3ffa5e84483 in PyObject_Call Objects/call.c:317 ROCm#159 0x3ffa5feb50d in do_call_core Python/ceval.c:5915 ROCm#160 0x3ffa5fe6019 in _PyEval_EvalFrameDefault Python/ceval.c:4277 ROCm#161 0x3ffa5fd7aed in _PyEval_EvalFrame Include/internal/pycore_ceval.h:46 ROCm#162 0x3ffa5fe8ba9 in _PyEval_Vector Python/ceval.c:5065 ROCm#163 0x3ffa5e8459b in _PyFunction_Vectorcall Objects/call.c:342 ROCm#164 0x3ffa5e83d1f in _PyObject_FastCallDictTstate Objects/call.c:142 ROCm#165 0x3ffa5e84937 in _PyObject_Call_Prepend Objects/call.c:431 ROCm#166 0x3ffa5f2f577 in slot_tp_call Objects/typeobject.c:7494 ROCm#167 0x3ffa5e84027 in _PyObject_MakeTpCall Objects/call.c:215 ROCm#168 0x3ffa5fd767b in _PyObject_VectorcallTstate Include/cpython/abstract.h:112 ROCm#169 0x3ffa5fd772f in PyObject_Vectorcall Include/cpython/abstract.h:123 ROCm#170 0x3ffa5feb289 in call_function Python/ceval.c:5891 ROCm#171 0x3ffa5fe5ad1 in _PyEval_EvalFrameDefault Python/ceval.c:4181 ROCm#172 0x3ffa5fd7aed in _PyEval_EvalFrame Include/internal/pycore_ceval.h:46 ROCm#173 0x3ffa5fe8ba9 in _PyEval_Vector Python/ceval.c:5065 ROCm#174 0x3ffa5e8459b in _PyFunction_Vectorcall Objects/call.c:342 ROCm#175 0x3ffa5fd76a3 in _PyObject_VectorcallTstate Include/cpython/abstract.h:114 ROCm#176 0x3ffa5fd772f in PyObject_Vectorcall Include/cpython/abstract.h:123 ROCm#177 0x3ffa5feb289 in call_function Python/ceval.c:5891 ROCm#178 0x3ffa5fe5c3b in _PyEval_EvalFrameDefault Python/ceval.c:4213 ROCm#179 0x3ffa5fd7aed in _PyEval_EvalFrame Include/internal/pycore_ceval.h:46 ROCm#180 0x3ffa5fe8ba9 in _PyEval_Vector Python/ceval.c:5065 ROCm#181 0x3ffa5e8459b in _PyFunction_Vectorcall Objects/call.c:342 ROCm#182 0x3ffa5e8427f in PyVectorcall_Call Objects/call.c:267 ROCm#183 0x3ffa5e84347 in _PyObject_Call Objects/call.c:290 ROCm#184 0x3ffa5e84483 in PyObject_Call Objects/call.c:317 ROCm#185 0x3ffa5feb7cf in do_call_core Python/ceval.c:5943 ROCm#186 0x3ffa5fe6019 in _PyEval_EvalFrameDefault Python/ceval.c:4277 ROCm#187 0x3ffa5fd7aed in _PyEval_EvalFrame Include/internal/pycore_ceval.h:46 ROCm#188 0x3ffa5fe8ba9 in _PyEval_Vector Python/ceval.c:5065 ROCm#189 0x3ffa5e8459b in _PyFunction_Vectorcall Objects/call.c:342 ROCm#190 0x3ffa5e841fb in PyVectorcall_Call Objects/call.c:255 ROCm#191 0x3ffa5e84347 in _PyObject_Call Objects/call.c:290 ROCm#192 0x3ffa5e84483 in PyObject_Call Objects/call.c:317 ROCm#193 0x3ffa5feb7cf in do_call_core Python/ceval.c:5943 ROCm#194 0x3ffa5fe6019 in _PyEval_EvalFrameDefault Python/ceval.c:4277 ROCm#195 0x3ffa5fd7aed in _PyEval_EvalFrame Include/internal/pycore_ceval.h:46 ROCm#196 0x3ffa5fe8ba9 in _PyEval_Vector Python/ceval.c:5065 ROCm#197 0x3ffa5e8459b in _PyFunction_Vectorcall Objects/call.c:342 ROCm#198 0x3ffa5e841fb in PyVectorcall_Call Objects/call.c:255 ROCm#199 0x3ffa5e84347 in _PyObject_Call Objects/call.c:290 ROCm#200 0x3ffa5e84483 in PyObject_Call Objects/call.c:317 ROCm#201 0x3ffa5feb7cf in do_call_core Python/ceval.c:5943 ROCm#202 0x3ffa5fe6019 in _PyEval_EvalFrameDefault Python/ceval.c:4277 ROCm#203 0x3ffa5fd7aed in _PyEval_EvalFrame Include/internal/pycore_ceval.h:46 ROCm#204 0x3ffa5fe8ba9 in _PyEval_Vector Python/ceval.c:5065 ROCm#205 0x3ffa5e8459b in _PyFunction_Vectorcall Objects/call.c:342 ROCm#206 0x3ffa5e841fb in PyVectorcall_Call Objects/call.c:255 ROCm#207 0x3ffa5e84347 in _PyObject_Call Objects/call.c:290 ROCm#208 0x3ffa5e84483 in PyObject_Call Objects/call.c:317 ROCm#209 0x3ffa5feb7cf in do_call_core Python/ceval.c:5943 ROCm#210 0x3ffa5fe6019 in _PyEval_EvalFrameDefault Python/ceval.c:4277 ROCm#211 0x3ffa5fd7aed in _PyEval_EvalFrame Include/internal/pycore_ceval.h:46 ROCm#212 0x3ffa5fe8ba9 in _PyEval_Vector Python/ceval.c:5065 ROCm#213 0x3ffa5e8459b in _PyFunction_Vectorcall Objects/call.c:342 ROCm#214 0x3ffa5e83d1f in _PyObject_FastCallDictTstate Objects/call.c:142 ROCm#215 0x3ffa5e84937 in _PyObject_Call_Prepend Objects/call.c:431 ROCm#216 0x3ffa5f2f577 in slot_tp_call Objects/typeobject.c:7494 ROCm#217 0x3ffa5e843f3 in _PyObject_Call Objects/call.c:305 ROCm#218 0x3ffa5e84483 in PyObject_Call Objects/call.c:317 ROCm#219 0x3ffa5feb7cf in do_call_core Python/ceval.c:5943 ROCm#220 0x3ffa5fe6019 in _PyEval_EvalFrameDefault Python/ceval.c:4277 ROCm#221 0x3ffa5fd7aed in _PyEval_EvalFrame Include/internal/pycore_ceval.h:46 ROCm#222 0x3ffa5fe8ba9 in _PyEval_Vector Python/ceval.c:5065 ROCm#223 0x3ffa5e8459b in _PyFunction_Vectorcall Objects/call.c:342 ROCm#224 0x3ffa5fd76a3 in _PyObject_VectorcallTstate Include/cpython/abstract.h:114 ROCm#225 0x3ffa5fd772f in PyObject_Vectorcall Include/cpython/abstract.h:123 ROCm#226 0x3ffa5feb289 in call_function Python/ceval.c:5891 ROCm#227 0x3ffa5fe5b21 in _PyEval_EvalFrameDefault Python/ceval.c:4198 ROCm#228 0x3ffa5fd7aed in _PyEval_EvalFrame Include/internal/pycore_ceval.h:46 ROCm#229 0x3ffa5fe8ba9 in _PyEval_Vector Python/ceval.c:5065 ROCm#230 0x3ffa5e8459b in _PyFunction_Vectorcall Objects/call.c:342 ROCm#231 0x3ffa5e8427f in PyVectorcall_Call Objects/call.c:267 ROCm#232 0x3ffa5e84347 in _PyObject_Call Objects/call.c:290 ROCm#233 0x3ffa5e84483 in PyObject_Call Objects/call.c:317 ROCm#234 0x3ffa5feb7cf in do_call_core Python/ceval.c:5943 ROCm#235 0x3ffa5fe6019 in _PyEval_EvalFrameDefault Python/ceval.c:4277 ROCm#236 0x3ffa5fd7aed in _PyEval_EvalFrame Include/internal/pycore_ceval.h:46 ROCm#237 0x3ffa5fe8ba9 in _PyEval_Vector Python/ceval.c:5065 ROCm#238 0x3ffa5e8459b in _PyFunction_Vectorcall Objects/call.c:342 ROCm#239 0x3ffa5e8427f in PyVectorcall_Call Objects/call.c:267 ROCm#240 0x3ffa5e84347 in _PyObject_Call Objects/call.c:290 ROCm#241 0x3ffa5e84483 in PyObject_Call Objects/call.c:317 ROCm#242 0x3ffa5feb7cf in do_call_core Python/ceval.c:5943 ROCm#243 0x3ffa5fe6019 in _PyEval_EvalFrameDefault Python/ceval.c:4277 ROCm#244 0x3ffa5fd7aed in _PyEval_EvalFrame Include/internal/pycore_ceval.h:46 ROCm#245 0x3ffa5fe8ba9 in _PyEval_Vector Python/ceval.c:5065 ROCm#246 0x3ffa5e8459b in _PyFunction_Vectorcall Objects/call.c:342 ROCm#247 0x3ffa5e8427f in PyVectorcall_Call Objects/call.c:267 ROCm#248 0x3ffa5e84347 in _PyObject_Call Objects/call.c:290 ROCm#249 0x3ffa5e84483 in PyObject_Call Objects/call.c:317 ROCm#250 0x3ffa5feb7cf in do_call_core Python/ceval.c:5943 ROCm#251 0x3ffa5fe6019 in _PyEval_EvalFrameDefault Python/ceval.c:4277 ROCm#252 0x3ffa5fd7aed in _PyEval_EvalFrame Include/internal/pycore_ceval.h:46 ROCm#253 0x3ffa5fe8ba9 in _PyEval_Vector Python/ceval.c:5065 ROCm#254 0x3ffa5e8459b in _PyFunction_Vectorcall Objects/call.c:342 ROCm#255 0x3ffa5e8427f in PyVectorcall_Call Objects/call.c:267 0x03ff70f54570 is located 0 bytes to the right of global variable 'Sleef_rempitabsp' defined in '/home/user/pytorch/third_party/sleef/src/libm/rempitab.c:986:34' (0x3ff70f53f00) of size 1648 SUMMARY: AddressSanitizer: global-buffer-overflow /home/user/pytorch/third_party/sleef/src/arch/helpers390x_128.h:129 in vgather_vf_p_vi2 Shadow bytes around the buggy address: 0x10007fee1ea850: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x10007fee1ea860: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x10007fee1ea870: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x10007fee1ea880: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x10007fee1ea890: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 =>0x10007fee1ea8a0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00[f9]f9 0x10007fee1ea8b0: f9 f9 f9 f9 00 00 00 00 00 00 00 00 00 00 00 00 0x10007fee1ea8c0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x10007fee1ea8d0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x10007fee1ea8e0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x10007fee1ea8f0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 Shadow byte legend (one shadow byte represents 8 application bytes): Addressable: 00 Partially addressable: 01 02 03 04 05 06 07 Heap left redzone: fa Freed heap region: fd Stack left redzone: f1 Stack mid redzone: f2 Stack right redzone: f3 Stack after return: f5 Stack use after scope: f8 Global redzone: f9 Global init order: f6 Poisoned by user: f7 Container overflow: fc Array cookie: ac Intra object redzone: bb ASan internal: fe Left alloca redzone: ca Right alloca redzone: cb Shadow gap: cc ==2030580==ABORTING ``` </details> It reproduces when running `pytest -v test/test_ops.py -k test_python_ref__refs_cos_cpu_bfloat16` under address sanitizer on s390x. See also: shibatch/sleef#464 Pull Request resolved: pytorch#102266 Approved by: https://github.com/malfet
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
No description provided.