Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 0 additions & 1 deletion ml-agents/mlagents/trainers/policy/tf_policy.py
Original file line number Diff line number Diff line change
Expand Up @@ -56,7 +56,6 @@ def __init__(self, seed, brain, trainer_parameters, load=False):

self.use_recurrent = trainer_parameters["use_recurrent"]
self.memory_dict: Dict[str, np.ndarray] = {}
self.reward_signals: Dict[str, "RewardSignal"] = {}
self.num_branches = len(self.brain.vector_action_space_size)
self.previous_action_dict: Dict[str, np.array] = {}
self.normalize = trainer_parameters.get("normalize", False)
Expand Down
5 changes: 1 addition & 4 deletions ml-agents/mlagents/trainers/sac/trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -156,7 +156,7 @@ def _process_trajectory(self, trajectory: Trajectory) -> None:
self.collected_rewards["environment"][agent_id] += np.sum(
agent_buffer_trajectory["environment_rewards"]
)
for name, reward_signal in self.policy.reward_signals.items():
for name, reward_signal in self.optimizer.reward_signals.items():
evaluate_result = reward_signal.evaluate_batch(
agent_buffer_trajectory
).scaled_reward
Expand Down Expand Up @@ -223,9 +223,6 @@ def create_policy(self, brain_parameters: BrainParameters) -> TFPolicy:
reparameterize=True,
create_tf_graph=False,
)
for _reward_signal in policy.reward_signals.keys():
self.collected_rewards[_reward_signal] = defaultdict(lambda: 0)

# Load the replay buffer if load
if self.load and self.checkpoint_replay_buffer:
try:
Expand Down
4 changes: 4 additions & 0 deletions ml-agents/mlagents/trainers/tests/test_sac.py
Original file line number Diff line number Diff line change
Expand Up @@ -221,6 +221,10 @@ def test_process_trajectory(dummy_config):
for agent in reward.values():
assert agent == 0
assert trainer.stats_reporter.get_stats_summaries("Policy/Extrinsic Reward").num > 0
# Assert we're not just using the default values
assert (
trainer.stats_reporter.get_stats_summaries("Policy/Extrinsic Reward").mean > 0
)


if __name__ == "__main__":
Expand Down