forked from gregkh/linux
-
Notifications
You must be signed in to change notification settings - Fork 19
Amazon 5.10.y/btrfs soft lockup #2
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Closed
vewe-richard
wants to merge
737
commits into
amazonlinux:amazon-5.10.y/master
from
vewe-richard:amazon-5.10.y/btrfs-soft-lockup
Closed
Amazon 5.10.y/btrfs soft lockup #2
vewe-richard
wants to merge
737
commits into
amazonlinux:amazon-5.10.y/master
from
vewe-richard:amazon-5.10.y/btrfs-soft-lockup
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
The huge_ptep_set_access_flags() can not make the huge pte old according to the discussion [1], that means we will always mornitor the young state of the hugetlb though we stopped accessing the hugetlb, as a result DAMON will get inaccurate accessing statistics. So changing to use set_huge_pte_at() to make the huge pte old to fix this issue. [1] https://lore.kernel.org/all/[email protected]/ Link: https://lkml.kernel.org/r/[email protected] Fixes: 49f4203 ("mm/damon: add access checking for hugetlb pages") Signed-off-by: Baolin Wang <[email protected]> Reviewed-by: SeongJae Park <[email protected]> Acked-by: Mike Kravetz <[email protected]> Reviewed-by: Muchun Song <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]>
damon_reclaim_init() allocates a memory chunk for ctx with damon_new_ctx(). When damon_select_ops() fails, ctx is not released, which will lead to a memory leak. We should release the ctx with damon_destroy_ctx() when damon_select_ops() fails to fix the memory leak. Link: https://lkml.kernel.org/r/[email protected] Fixes: 4d69c34 ("mm/damon/reclaim: use damon_select_ops() instead of damon_{v,p}a_set_operations()") Signed-off-by: Jianglei Nie <[email protected]> Reviewed-by: SeongJae Park <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]>
When user tries to create a DAMON context via the DAMON debugfs interface with a name of an already existing context, the context directory creation fails but a new context is created and added in the internal data structure, due to absence of the directory creation success check. As a result, memory could leak and DAMON cannot be turned on. An example test case is as below: # cd /sys/kernel/debug/damon/ # echo "off" > monitor_on # echo paddr > target_ids # echo "abc" > mk_context # echo "abc" > mk_context # echo $$ > abc/target_ids # echo "on" > monitor_on <<< fails Return value of 'debugfs_create_dir()' is expected to be ignored in general, but this is an exceptional case as DAMON feature is depending on the debugfs functionality and it has the potential duplicate name issue. This commit therefore fixes the issue by checking the directory creation failure and immediately return the error in the case. Link: https://lkml.kernel.org/r/[email protected] Fixes: 75c1c2b ("mm/damon/dbgfs: support multiple contexts") Signed-off-by: Badari Pulavarty <[email protected]> Signed-off-by: SeongJae Park <[email protected]> Cc: <[email protected]> [ 5.15.x] Signed-off-by: Andrew Morton <[email protected]>
This reverts commit 509c2c9. Commit "1a072f13b2dc Mitigate unbalanced RETs on vmexit via serialising wrmsr" addresses this with less performance impact. [ Hailmo: Resolved conflicts when rebasing onto 5.10.190 and adding SRSO and GDS support ] Signed-off-by: Suraj Jitindar Singh <[email protected]>
…-rwx-segments" This reverts commit 8f4f2c9. This causes arm64 debug builds to fail with: *** ERROR: No build ID note found in /builddir/build/BUILDROOT/kernel-5.15.63-32.131.amzn2.aarch64/usr/lib/debug/lib/modules/5.15.63-32.131.amzn2.aarch64/vmlinux This is due to the notes section which contains the build id being missing from the linux elf. Revert this commit until this can be remedied. Signed-off-by: Suraj Jitindar Singh <[email protected]>
Source: https://github.com/amzn/amzn-drivers/ Change Log: ## r2.8.0 release notes **Notes** * The driver is now dependent on the ptp module for loading See README for more details. **New Features** * Add support for PTP HW clock * Add support for SRD metrics Feature's enablement and documentation would be in future release **Bug Fixes** * Fix potential sign extension issue * Reduce memory footprint of some structs * Fix updating rx_copybreak issue * Fix xdp drops handling due to multibuf packets * Handle ena_calc_io_queue_size() possible errors * Destroy correct amount of xdp queues upon failure **Minor Changes** * Remove wide LLQ comment on supported versions * Backport uapi/bpf.h inclusion * Add a counter for driver's reset failures * Take xdp packets stats into account in ena_get_stats64() * Make queue stats code cleaner by removing if block * Remove redundant empty line * Remove confusing comment * Remove flag reading code duplication * Replace ENA local ENA_NAPI_BUDGET to global NAPI_POLL_WEIGHT * Change default print level for netif_ prints * Relocate skb_tx_timestamp() to improve time stamping accuracy * Backport bpf_warn_invalid_xdp_action() change * Fix incorrect indentation using spaces * Driver now compiles with Linux kernel 5.19 Signed-off-by: Suraj Jitindar Singh <[email protected]>
Signed-off-by: Shaoying Xu <[email protected]>
When calling debugfs_lookup() the result must have dput() called on it, otherwise the memory will leak over time. Fix this up by properly calling dput(). Link: https://lkml.kernel.org/r/[email protected] Fixes: 75c1c2b ("mm/damon/dbgfs: support multiple contexts") Signed-off-by: Greg Kroah-Hartman <[email protected]> Signed-off-by: SeongJae Park <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]>
When damon_sysfs_add_target couldn't find proper task, New allocated damon_target structure isn't registered yet, So, it's impossible to free new allocated one by damon_sysfs_destroy_targets. By calling damon_add_target as soon as allocating new target, Fix this possible memory leak. Link: https://lkml.kernel.org/r/[email protected] Fixes: a61ea56 ("mm/damon/sysfs: link DAMON for virtual address spaces monitoring") Signed-off-by: Levi Yun <[email protected]> Signed-off-by: SeongJae Park <[email protected]> Reviewed-by: SeongJae Park <[email protected]> Cc: <[email protected]> [5.17.x] Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: SeongJae Park <[email protected]>
commit 9e7a4d9 upstream. Usage of spin locks was not allowed for tracing programs due to insufficient preemption checks. The verifier does not currently prevent LSM programs from using spin locks, but the helpers are not exposed via bpf_lsm_func_proto. Based on the discussion in [1], non-sleepable LSM programs should be able to use bpf_spin_{lock, unlock}. Sleepable LSM programs can be preempted which means that allowng spin locks will need more work (disabling preemption and the verifier ensuring that no sleepable helpers are called when a spin lock is held). [1]: https://lore.kernel.org/bpf/[email protected]/T/#md601a053229287659071600d3483523f752cd2fb Signed-off-by: KP Singh <[email protected]> Signed-off-by: Alexei Starovoitov <[email protected]> Acked-by: Song Liu <[email protected]> Acked-by: Martin KaFai Lau <[email protected]> Link: https://lore.kernel.org/bpf/[email protected] Signed-off-by: Kuniyuki Iwashima <[email protected]>
commit 4cf1bc1 upstream. Similar to bpf_local_storage for sockets and inodes add local storage for task_struct. The life-cycle of storage is managed with the life-cycle of the task_struct. i.e. the storage is destroyed along with the owning task with a callback to the bpf_task_storage_free from the task_free LSM hook. The BPF LSM allocates an __rcu pointer to the bpf_local_storage in the security blob which are now stackable and can co-exist with other LSMs. The userspace map operations can be done by using a pid fd as a key passed to the lookup, update and delete operations. Signed-off-by: KP Singh <[email protected]> Signed-off-by: Alexei Starovoitov <[email protected]> Acked-by: Song Liu <[email protected]> Acked-by: Martin KaFai Lau <[email protected]> Link: https://lore.kernel.org/bpf/[email protected] Signed-off-by: Kuniyuki Iwashima <[email protected]>
Instead of putting io_uring's registered files in unix_gc() we want it to be done by io_uring itself. The trick here is to consider io_uring registered files for cycle detection but not actually putting them down. Because io_uring can't register other ring instances, this will remove all refs to the ring file triggering the ->release path and clean up with io_ring_ctx_free(). Cc: [email protected] Fixes: 6b06314 ("io_uring: add file set registration") Reported-and-tested-by: David Bouman <[email protected]> Signed-off-by: Pavel Begunkov <[email protected]> Signed-off-by: Thadeu Lima de Souza Cascardo <[email protected]> [axboe: add kerneldoc comment to skb, fold in skb leak fix] Signed-off-by: Jens Axboe <[email protected]>
Since commit 0f91d13 ("mm/damon: simplify stop mechanism") delete kdamond_stop and change to use kthread stop mechanism, these obsolete comments should be removed accordingly. Link: https://lkml.kernel.org/r/[email protected] Signed-off-by: Chengming Zhou <[email protected]> Reviewed-by: SeongJae Park <[email protected]> Signed-off-by: Andrew Morton <[email protected]>
The kernel is in lockdown mode when secureboot is enabled and hence debugfs cannot be used. Add support for this and other general cases where debugfs cannot be read and communicate the same to the user before running tests. Signed-off-by: Gautam <[email protected]> Reviewed-by: SeongJae Park <[email protected]> Signed-off-by: Shuah Khan <[email protected]>
… due to online tuning support Patch series "mm/damon: trivial cleanups". This patchset contains trivial cleansups for DAMON code. This patch (of 6): Commit 81a8418 ("Docs/admin-guide/mm/damon/reclaim: document 'commit_inputs' parameter") has documented the 'commit_inputs' parameter which allows online parameter update, but it didn't remove a paragraph saying the online parameter update is impossible. This commit removes the obsolete paragraph. Link: https://lkml.kernel.org/r/[email protected] Link: https://lkml.kernel.org/r/[email protected] Fixes: 81a8418 ("Docs/admin-guide/mm/damon/reclaim: document 'commit_inputs' parameter") Signed-off-by: SeongJae Park <[email protected]> Cc: Jonathan Corbet <[email protected]> Signed-off-by: Andrew Morton <[email protected]>
The function for knowing if given monitoring context's targets will have pid or not is defined and used in dbgfs only. However, the logic is also needed for sysfs. This commit moves the code to damon.h and makes both dbgfs and sysfs to use it. Link: https://lkml.kernel.org/r/[email protected] Signed-off-by: SeongJae Park <[email protected]> Cc: Jonathan Corbet <[email protected]> Signed-off-by: Andrew Morton <[email protected]>
DAMON_RECLAIM's handling of 'commit_inputs' parameter is duplicated in 'after_aggregation()' and 'after_wmarks_check()' callbacks. This commit deduplicates the code for better maintenance. Link: https://lkml.kernel.org/r/[email protected] Signed-off-by: SeongJae Park <[email protected]> Cc: Jonathan Corbet <[email protected]> Signed-off-by: Andrew Morton <[email protected]>
DAMON sysfs interface's DAMON context building and its online parameter update have duplicated code. This commit removes the duplicate. Link: https://lkml.kernel.org/r/[email protected] Signed-off-by: SeongJae Park <[email protected]> Cc: Jonathan Corbet <[email protected]> Signed-off-by: Andrew Morton <[email protected]>
DAMON_RECLAIM's 'enabled' parameter store callback ('enabled_store()') schedules the parameter check timer ('damon_reclaim_timer') if the parameter is set as 'Y'. Then, the timer schedules itself to check if user has set the parameter as 'N'. It's unnecessarily complex. This commit makes it simpler by making the parameter store callback to schedule the timer regardless of the parameter value and disabling the timer's self scheduling. Link: https://lkml.kernel.org/r/[email protected] Signed-off-by: SeongJae Park <[email protected]> Cc: Jonathan Corbet <[email protected]> Signed-off-by: Andrew Morton <[email protected]>
This commit adds 'damon_reclaim_' prefix to 'enabled_store()', so that we can distinguish it easily from the stack trace using 'faddr2line.sh' like tools. Link: https://lkml.kernel.org/r/[email protected] Signed-off-by: SeongJae Park <[email protected]> Cc: Jonathan Corbet <[email protected]> Signed-off-by: Andrew Morton <[email protected]>
…and 'damos_action' values Patch series "Extend DAMOS for Proactive LRU-lists Sorting". Introduction ============ In short, this patchset 1) extends DAMON-based Operation Schemes (DAMOS) for low overhead data access pattern based LRU-lists sorting, and 2) implements a static kernel module for easy use of conservatively-tuned version of that using the extended DAMOS capability. Background ---------- As page-granularity access checking overhead could be significant on huge systems, LRU lists are normally not proactively sorted but partially and reactively sorted for special events including specific user requests, system calls and memory pressure. As a result, LRU lists are sometimes not so perfectly prepared to be used as a trustworthy access pattern source for some situations including reclamation target pages selection under sudden memory pressure. DAMON-based Proactive LRU-lists Sorting --------------------------------------- Because DAMON can identify access patterns of best-effort accuracy while inducing only user-specified range of overhead, using DAMON for Proactive LRU-lists Sorting (PLRUS) could be helpful for this situation. The idea is quite simple. Find hot pages and cold pages using DAMON, and prioritize hot pages while deprioritizing cold pages on their LRU-lists. This patchset extends DAMON to support such schemes by introducing a couple of new DAMOS actions for prioritizing and deprioritizing memory regions of specific access patterns on their LRU-lists. In detail, this patchset simply uses 'mark_page_accessed()' and 'deactivate_page()' functions for prioritization and deprioritization of pages on their LRU lists, respectively. To make the scheme easy to use without complex tuning for common situations, this patchset further implements a static kernel module called 'DAMON_LRU_SORT' using the extended DAMOS functionality. It proactively sorts LRU-lists using DAMON with conservatively chosen default hotness/coldness thresholds and small CPU usage quota limit. That is, the module under its default parameters will make no harm for common situation but provide some level of benefit for systems having clear hot/cold access pattern under only memory pressure while consuming only limited small portion of CPU time. Related Works ------------- Proactive reclamation is well known to be helpful for reducing non-optimal reclamation target selection caused performance drops. However, proactive reclamation is not a best option for some cases, because it could incur additional I/O. For an example, it could be prohitive for systems using storage devices that total number of writes is limited, or cloud block storages that charges every I/O. Some proactive reclamation approaches[1,2] induce a level of memory pressure using memcg files or swappiness while monitoring PSI. As reclamation target selection is still relying on the original LRU-lists mechanism, using DAMON-based proactive reclamation before inducing the proactive reclamation could allow more memory saving with same level of performance overhead, or less performance overhead with same level of memory saving. [1] https://blogs.oracle.com/linux/post/anticipating-your-memory-needs [2] https://www.pdl.cmu.edu/ftp/NVM/tmo_asplos22.pdf Evaluation ========== In short, PLRUS achieves 10% memory PSI (some) reduction, 14% major page faults reduction, and 3.74% speedup under memory pressure. Setup ----- To show the effect of PLRUS, I run PARSEC3 and SPLASH-2X benchmarks under below variant systems and measure a few metrics including the runtime of each workload, number of system-wide major page faults, and system-wide memory PSI (some). - orig: v5.18-rc4 based mm-unstable kernel + this patchset, but no DAMON scheme applied. - mprs: Same to 'orig' but artificial memory pressure is induced. - plrus: Same to 'mprs' but a radically tuned PLRUS scheme is applied to the entire physical address space of the system. For the artificial memory pressure, I set 'memory.limit_in_bytes' to 75% of the running workload's peak RSS, wait 1 second, remove the pressure by setting it to 200% of the peak RSS, wait 10 seconds, and repeat the procedure until the workload finishes[1]. I use zram based swap device. The tests are automated[2]. [1] https://github.com/awslabs/damon-tests/blob/next/perf/runners/back/0009_memcg_pressure.sh [2] https://github.com/awslabs/damon-tests/blob/next/perf/full_once_config.sh Radically Tuned PLRUS --------------------- To show effect of PLRUS on the PARSEC3/SPLASH-2X workloads which runs for no long time, we use radically tuned version of PLRUS. The version asks DAMON to do the proactive LRU-lists sorting as below. 1. Find any memory regions shown some accesses (approximately >=20 accesses per 100 sampling) and prioritize pages of the regions on their LRU lists using up to 2% CPU time. Under the CPU time limit, prioritize regions having higher access frequency and kept the access frequency longer first. 2. Find any memory regions shown no access for at least >=5 seconds and deprioritize pages of the rgions on their LRU lists using up to 2% CPU time. Under the CPU time limit, deprioritize regions that not accessed for longer time first. Results ------- I repeat the tests 25 times and calculate average of the measured numbers. The results are as below: metric orig mprs plrus plrus/mprs runtime_seconds 190.06 292.83 281.87 0.96 pgmajfaults 852.55 8769420.00 7525040.00 0.86 memory_psi_some_us 106911.00 6943420.00 6220920.00 0.90 The first row is for legend. The first cell shows the metric that the following cells of the row shows. Second, third, and fourth cells show the metrics under the configs shown at the first row of the cell, and the fifth cell shows the metric under 'plrus' divided by the metric under 'mprs'. Second row shows the averaged runtime of the workloads in seconds. Third row shows the number of system-wide major page faults while the test was ongoing. Fourth row shows the system-wide memory pressure stall for some processes in microseconds while the test was ongoing. In short, PLRUS achieves 10% memory PSI (some) reduction, 14% major page faults reduction, and 3.74% speedup under memory pressure. We also confirmed the CPU usage of kdamond was 2.61% of single CPU, which is below 4% as expected. Sequence of Patches =================== The first and second patch cleans up DAMON debugfs interface and DAMOS_PAGEOUT handling code of physical address space monitoring operations implementation for easier extension of the code. The thrid and fourth patches implement a new DAMOS action called 'lru_prio', which prioritizes pages under memory regions which have a user-specified access pattern, and document it, respectively. The fifth and sixth patches implement yet another new DAMOS action called 'lru_deprio', which deprioritizes pages under memory regions which have a user-specified access pattern, and document it, respectively. The seventh patch implements a static kernel module called 'damon_lru_sort', which utilizes the DAMON-based proactive LRU-lists sorting under conservatively chosen default parameter. Finally, the eighth patch documents 'damon_lru_sort'. This patch (of 8): DAMON debugfs interface assumes users will write 'damos_action' value directly to the 'schemes' file. This makes adding new 'damos_action' in the middle of its definition breaks the backward compatibility of DAMON debugfs interface, as values of some 'damos_action' could be changed. To mitigate the situation, this commit adds mappings between the user inputs and 'damos_action' value and makes DAMON debugfs code uses those. Link: https://lkml.kernel.org/r/[email protected] Link: https://lkml.kernel.org/r/[email protected] Signed-off-by: SeongJae Park <[email protected]> Cc: Jonathan Corbet <[email protected]> Signed-off-by: Andrew Morton <[email protected]>
This commit moves code for 'DAMOS_PAGEOUT' handling of the physical address space monitoring operations set to a separate function so that its caller, 'damon_pa_apply_scheme()', can be more easily extended for additional DAMOS actions later. Link: https://lkml.kernel.org/r/[email protected] Signed-off-by: SeongJae Park <[email protected]> Cc: Jonathan Corbet <[email protected]> Signed-off-by: Andrew Morton <[email protected]>
This commit adds a new DAMOS action called 'LRU_PRIO' for the physical address space. The action prioritizes pages in the memory regions of the user-specified target access pattern on their LRU lists. This is hence supposed to be used for frequently accessed (hot) memory regions so that hot pages could be more likely protected under memory pressure. Internally, it simply calls 'mark_page_accessed()'. Link: https://lkml.kernel.org/r/[email protected] Signed-off-by: SeongJae Park <[email protected]> Cc: Jonathan Corbet <[email protected]> Signed-off-by: Andrew Morton <[email protected]>
This commit documents the 'lru_prio' scheme action for DAMON sysfs interface. Link: https://lkml.kernel.org/r/[email protected] Signed-off-by: SeongJae Park <[email protected]> Cc: Jonathan Corbet <[email protected]> Signed-off-by: Andrew Morton <[email protected]>
This commit adds a new DAMON-based operation scheme action called 'LRU_DEPRIO' for physical address space. The action deprioritizes pages in the memory area of the target access pattern on their LRU lists. This is hence supposed to be used for rarely accessed (cold) memory regions so that cold pages could be more likely reclaimed first under memory pressure. Internally, it simply calls 'lru_deactivate()'. Using this with 'LRU_PRIO' action for hot pages, users can proactively sort LRU lists based on the access pattern. That is, it can make the LRU lists somewhat more trustworthy source of access temperature. As a result, efficiency of LRU-lists based mechanisms including the reclamation target selection could be improved. Link: https://lkml.kernel.org/r/[email protected] Signed-off-by: SeongJae Park <[email protected]> Cc: Jonathan Corbet <[email protected]> Signed-off-by: Andrew Morton <[email protected]>
This commit documents the 'LRU_DEPRIO' scheme action for DAMON sysfs interface.` Link: https://lkml.kernel.org/r/[email protected] Signed-off-by: SeongJae Park <[email protected]> Cc: Jonathan Corbet <[email protected]> Signed-off-by: Andrew Morton <[email protected]>
Users can do data access-aware LRU-lists sorting using 'LRU_PRIO' and 'LRU_DEPRIO' DAMOS actions. However, finding best parameters including the hotness/coldness thresholds, CPU quota, and watermarks could be challenging for some users. To make the scheme easy to be used without complex tuning for common situations, this commit implements a static kernel module called 'DAMON_LRU_SORT' using the 'LRU_PRIO' and 'LRU_DEPRIO' DAMOS actions. It proactively sorts LRU-lists using DAMON with conservatively chosen default values of the parameters. That is, the module under its default parameters will make no harm for common situations but provide some level of efficiency improvements for systems having clear hot/cold access pattern under a level of memory pressure while consuming only a limited small portion of CPU time. Link: https://lkml.kernel.org/r/[email protected] Signed-off-by: SeongJae Park <[email protected]> Cc: Jonathan Corbet <[email protected]> Signed-off-by: Andrew Morton <[email protected]>
This commit documents the usage of DAMON_LRU_SORT for admins. Link: https://lkml.kernel.org/r/[email protected] Signed-off-by: SeongJae Park <[email protected]> Cc: Jonathan Corbet <[email protected]> Signed-off-by: Andrew Morton <[email protected]>
damon_lru_sort_init() returns an error when damon_select_ops() fails without freeing 'ctx' which allocated before. This commit fixes the potential memory leak by freeing 'ctx' under the situation. Link: https://lkml.kernel.org/r/[email protected] Fixes: 40e983c ("mm/damon: introduce DAMON-based LRU-lists Sorting") Signed-off-by: SeongJae Park <[email protected]> Signed-off-by: Andrew Morton <[email protected]>
The workflow example code is not working since it got the file names wrong. So fix this. Fixes: b184027 ("Docs/admin-guide/mm/damon/usage: document DAMON sysfs interface") Reviewed-by: SeongJae Park <[email protected]> Signed-off-by: Kairui Song <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Jonathan Corbet <[email protected]>
surajjs95
pushed a commit
that referenced
this pull request
May 12, 2025
As reported by syzbot and experienced by Pavel, using cpus_read_lock() in wake_up_all_idle_cpus() generates lock inversion (against mmap_sem and possibly others). Instead, shrink the preempt disable region by iterating all CPUs and checking the online status for each individual CPU while having preemption disabled. Fixes: 8850cb6 ("sched: Simplify wake_up_*idle*()") Reported-by: [email protected] Reported-by: Pavel Machek <[email protected]> Reported-by: Qian Cai <[email protected]> Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Tested-by: Qian Cai <[email protected]>
surajjs95
pushed a commit
that referenced
this pull request
May 12, 2025
commit f79a609 upstream. log_max_qp in driver's default profile #2 was set to 18, but FW actually supports 17 at the most - a situation that led to the concerning print when the driver is loaded: "log_max_qp value in current profile is 18, changing to HCA capabaility limit (17)" The expected behavior from mlx5_profile #2 is to match the maximum FW capability in regards to log_max_qp. Thus, log_max_qp in profile #2 is initialized to a defined static value (0xff) - which basically means that when loading this profile, log_max_qp value will be what the currently installed FW supports at most. Signed-off-by: Maher Sanalla <[email protected]> Reviewed-by: Maor Gottlieb <[email protected]> Signed-off-by: Saeed Mahameed <[email protected]> [v5.10: replaced prof->log_max_qp with profile[prof_sel].log_max_qp] Signed-off-by: Shaoying Xu <[email protected]>
yifei-aws
pushed a commit
that referenced
this pull request
May 13, 2025
A "small" CIFS buffer is not big enough in general to hold a setacl request for SMB2, and we end up overflowing the buffer in send_set_info(). For instance: # mount.cifs //127.0.0.1/test /mnt/test -o username=test,password=test,nounix,cifsacl # touch /mnt/test/acltest # getcifsacl /mnt/test/acltest REVISION:0x1 CONTROL:0x9004 OWNER:S-1-5-21-2926364953-924364008-418108241-1000 GROUP:S-1-22-2-1001 ACL:S-1-5-21-2926364953-924364008-418108241-1000:ALLOWED/0x0/0x1e01ff ACL:S-1-22-2-1001:ALLOWED/0x0/R ACL:S-1-22-2-1001:ALLOWED/0x0/R ACL:S-1-5-21-2926364953-924364008-418108241-1000:ALLOWED/0x0/0x1e01ff ACL:S-1-1-0:ALLOWED/0x0/R # setcifsacl -a "ACL:S-1-22-2-1004:ALLOWED/0x0/R" /mnt/test/acltest this setacl will cause the following KASAN splat: [ 330.777927] BUG: KASAN: slab-out-of-bounds in send_set_info+0x4dd/0xc20 [cifs] [ 330.779696] Write of size 696 at addr ffff88010d5e2860 by task setcifsacl/1012 [ 330.781882] CPU: 1 PID: 1012 Comm: setcifsacl Not tainted 4.18.0-rc2+ #2 [ 330.783140] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1 04/01/2014 [ 330.784395] Call Trace: [ 330.784789] dump_stack+0xc2/0x16b [ 330.786777] print_address_description+0x6a/0x270 [ 330.787520] kasan_report+0x258/0x380 [ 330.788845] memcpy+0x34/0x50 [ 330.789369] send_set_info+0x4dd/0xc20 [cifs] [ 330.799511] SMB2_set_acl+0x76/0xa0 [cifs] [ 330.801395] set_smb2_acl+0x7ac/0xf30 [cifs] [ 330.830888] cifs_xattr_set+0x963/0xe40 [cifs] [ 330.840367] __vfs_setxattr+0x84/0xb0 [ 330.842060] __vfs_setxattr_noperm+0xe6/0x370 [ 330.843848] vfs_setxattr+0xc2/0xd0 [ 330.845519] setxattr+0x258/0x320 [ 330.859211] path_setxattr+0x15b/0x1b0 [ 330.864392] __x64_sys_setxattr+0xc0/0x160 [ 330.866133] do_syscall_64+0x14e/0x4b0 [ 330.876631] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 330.878503] RIP: 0033:0x7ff2e507db0a [ 330.880151] Code: 48 8b 0d 89 93 2c 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 49 89 ca b8 bc 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 56 93 2c 00 f7 d8 64 89 01 48 [ 330.885358] RSP: 002b:00007ffdc4903c18 EFLAGS: 00000246 ORIG_RAX: 00000000000000bc [ 330.887733] RAX: ffffffffffffffda RBX: 000055d1170de140 RCX: 00007ff2e507db0a [ 330.890067] RDX: 000055d1170de7d0 RSI: 000055d115b39184 RDI: 00007ffdc4904818 [ 330.892410] RBP: 0000000000000001 R08: 0000000000000000 R09: 000055d1170de7e4 [ 330.894785] R10: 00000000000002b8 R11: 0000000000000246 R12: 0000000000000007 [ 330.897148] R13: 000055d1170de0c0 R14: 0000000000000008 R15: 000055d1170de550 [ 330.901057] Allocated by task 1012: [ 330.902888] kasan_kmalloc+0xa0/0xd0 [ 330.904714] kmem_cache_alloc+0xc8/0x1d0 [ 330.906615] mempool_alloc+0x11e/0x380 [ 330.908496] cifs_small_buf_get+0x35/0x60 [cifs] [ 330.910510] smb2_plain_req_init+0x4a/0xd60 [cifs] [ 330.912551] send_set_info+0x198/0xc20 [cifs] [ 330.914535] SMB2_set_acl+0x76/0xa0 [cifs] [ 330.916465] set_smb2_acl+0x7ac/0xf30 [cifs] [ 330.918453] cifs_xattr_set+0x963/0xe40 [cifs] [ 330.920426] __vfs_setxattr+0x84/0xb0 [ 330.922284] __vfs_setxattr_noperm+0xe6/0x370 [ 330.924213] vfs_setxattr+0xc2/0xd0 [ 330.926008] setxattr+0x258/0x320 [ 330.927762] path_setxattr+0x15b/0x1b0 [ 330.929592] __x64_sys_setxattr+0xc0/0x160 [ 330.931459] do_syscall_64+0x14e/0x4b0 [ 330.933314] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 330.936843] Freed by task 0: [ 330.938588] (stack is not available) [ 330.941886] The buggy address belongs to the object at ffff88010d5e2800 which belongs to the cache cifs_small_rq of size 448 [ 330.946362] The buggy address is located 96 bytes inside of 448-byte region [ffff88010d5e2800, ffff88010d5e29c0) [ 330.950722] The buggy address belongs to the page: [ 330.952789] page:ffffea0004357880 count:1 mapcount:0 mapping:ffff880108fdca80 index:0x0 compound_mapcount: 0 [ 330.955665] flags: 0x17ffffc0008100(slab|head) [ 330.957760] raw: 0017ffffc0008100 dead000000000100 dead000000000200 ffff880108fdca80 [ 330.960356] raw: 0000000000000000 0000000080100010 00000001ffffffff 0000000000000000 [ 330.963005] page dumped because: kasan: bad access detected [ 330.967039] Memory state around the buggy address: [ 330.969255] ffff88010d5e2880: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 330.971833] ffff88010d5e2900: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 330.974397] >ffff88010d5e2980: 00 00 00 00 00 00 00 00 fc fc fc fc fc fc fc fc [ 330.976956] ^ [ 330.979226] ffff88010d5e2a00: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [ 330.981755] ffff88010d5e2a80: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [ 330.984225] ================================================================== Fix this by allocating a regular CIFS buffer in smb2_plain_req_init() if the request command is SMB2_SET_INFO. Reported-by: Jianhong Yin <[email protected]> Fixes: 366ed84 ("cifs: Use smb 2 - 3 and cifsacl mount options setacl function") CC: Stable <[email protected]> Signed-off-by: Stefano Brivio <[email protected]> Reviewed-and-tested-by: Aurelien Aptel <[email protected]> Signed-off-by: Steve French <[email protected]> Signed-off-by: Boris Protopopov <[email protected]>
paniakin-aws
pushed a commit
that referenced
this pull request
May 14, 2025
As reported by syzbot and experienced by Pavel, using cpus_read_lock() in wake_up_all_idle_cpus() generates lock inversion (against mmap_sem and possibly others). Instead, shrink the preempt disable region by iterating all CPUs and checking the online status for each individual CPU while having preemption disabled. Fixes: 8850cb6 ("sched: Simplify wake_up_*idle*()") Reported-by: [email protected] Reported-by: Pavel Machek <[email protected]> Reported-by: Qian Cai <[email protected]> Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Tested-by: Qian Cai <[email protected]>
paniakin-aws
pushed a commit
that referenced
this pull request
May 14, 2025
commit f79a609 upstream. log_max_qp in driver's default profile #2 was set to 18, but FW actually supports 17 at the most - a situation that led to the concerning print when the driver is loaded: "log_max_qp value in current profile is 18, changing to HCA capabaility limit (17)" The expected behavior from mlx5_profile #2 is to match the maximum FW capability in regards to log_max_qp. Thus, log_max_qp in profile #2 is initialized to a defined static value (0xff) - which basically means that when loading this profile, log_max_qp value will be what the currently installed FW supports at most. Signed-off-by: Maher Sanalla <[email protected]> Reviewed-by: Maor Gottlieb <[email protected]> Signed-off-by: Saeed Mahameed <[email protected]> [v5.10: replaced prof->log_max_qp with profile[prof_sel].log_max_qp] Signed-off-by: Shaoying Xu <[email protected]>
paniakin-aws
pushed a commit
that referenced
this pull request
May 14, 2025
commit 96611c2 upstream. As reported by syzbot and experienced by Pavel, using cpus_read_lock() in wake_up_all_idle_cpus() generates lock inversion (against mmap_sem and possibly others). Instead, shrink the preempt disable region by iterating all CPUs and checking the online status for each individual CPU while having preemption disabled. Fixes: 8850cb6 ("sched: Simplify wake_up_*idle*()") Reported-by: [email protected] Reported-by: Pavel Machek <[email protected]> Reported-by: Qian Cai <[email protected]> Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Tested-by: Qian Cai <[email protected]> (cherry picked from commit 96611c2)
hagarhem
pushed a commit
that referenced
this pull request
May 15, 2025
commit 96611c2 upstream. As reported by syzbot and experienced by Pavel, using cpus_read_lock() in wake_up_all_idle_cpus() generates lock inversion (against mmap_sem and possibly others). Instead, shrink the preempt disable region by iterating all CPUs and checking the online status for each individual CPU while having preemption disabled. Fixes: 8850cb6 ("sched: Simplify wake_up_*idle*()") Reported-by: [email protected] Reported-by: Pavel Machek <[email protected]> Reported-by: Qian Cai <[email protected]> Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Tested-by: Qian Cai <[email protected]> (cherry picked from commit 96611c2)
hagarhem
pushed a commit
that referenced
this pull request
May 15, 2025
As reported by syzbot and experienced by Pavel, using cpus_read_lock() in wake_up_all_idle_cpus() generates lock inversion (against mmap_sem and possibly others). Instead, shrink the preempt disable region by iterating all CPUs and checking the online status for each individual CPU while having preemption disabled. Fixes: 8850cb6 ("sched: Simplify wake_up_*idle*()") Reported-by: [email protected] Reported-by: Pavel Machek <[email protected]> Reported-by: Qian Cai <[email protected]> Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Tested-by: Qian Cai <[email protected]>
hagarhem
pushed a commit
that referenced
this pull request
May 15, 2025
commit f79a609 upstream. log_max_qp in driver's default profile #2 was set to 18, but FW actually supports 17 at the most - a situation that led to the concerning print when the driver is loaded: "log_max_qp value in current profile is 18, changing to HCA capabaility limit (17)" The expected behavior from mlx5_profile #2 is to match the maximum FW capability in regards to log_max_qp. Thus, log_max_qp in profile #2 is initialized to a defined static value (0xff) - which basically means that when loading this profile, log_max_qp value will be what the currently installed FW supports at most. Signed-off-by: Maher Sanalla <[email protected]> Reviewed-by: Maor Gottlieb <[email protected]> Signed-off-by: Saeed Mahameed <[email protected]> [v5.10: replaced prof->log_max_qp with profile[prof_sel].log_max_qp] Signed-off-by: Shaoying Xu <[email protected]>
nathan-zcgao
pushed a commit
that referenced
this pull request
May 16, 2025
As reported by syzbot and experienced by Pavel, using cpus_read_lock() in wake_up_all_idle_cpus() generates lock inversion (against mmap_sem and possibly others). Instead, shrink the preempt disable region by iterating all CPUs and checking the online status for each individual CPU while having preemption disabled. Fixes: 8850cb6 ("sched: Simplify wake_up_*idle*()") Reported-by: [email protected] Reported-by: Pavel Machek <[email protected]> Reported-by: Qian Cai <[email protected]> Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Tested-by: Qian Cai <[email protected]>
nathan-zcgao
pushed a commit
that referenced
this pull request
May 16, 2025
commit f79a609 upstream. log_max_qp in driver's default profile #2 was set to 18, but FW actually supports 17 at the most - a situation that led to the concerning print when the driver is loaded: "log_max_qp value in current profile is 18, changing to HCA capabaility limit (17)" The expected behavior from mlx5_profile #2 is to match the maximum FW capability in regards to log_max_qp. Thus, log_max_qp in profile #2 is initialized to a defined static value (0xff) - which basically means that when loading this profile, log_max_qp value will be what the currently installed FW supports at most. Signed-off-by: Maher Sanalla <[email protected]> Reviewed-by: Maor Gottlieb <[email protected]> Signed-off-by: Saeed Mahameed <[email protected]> [v5.10: replaced prof->log_max_qp with profile[prof_sel].log_max_qp] Signed-off-by: Shaoying Xu <[email protected]>
nathan-zcgao
pushed a commit
that referenced
this pull request
May 16, 2025
A "small" CIFS buffer is not big enough in general to hold a setacl request for SMB2, and we end up overflowing the buffer in send_set_info(). For instance: # mount.cifs //127.0.0.1/test /mnt/test -o username=test,password=test,nounix,cifsacl # touch /mnt/test/acltest # getcifsacl /mnt/test/acltest REVISION:0x1 CONTROL:0x9004 OWNER:S-1-5-21-2926364953-924364008-418108241-1000 GROUP:S-1-22-2-1001 ACL:S-1-5-21-2926364953-924364008-418108241-1000:ALLOWED/0x0/0x1e01ff ACL:S-1-22-2-1001:ALLOWED/0x0/R ACL:S-1-22-2-1001:ALLOWED/0x0/R ACL:S-1-5-21-2926364953-924364008-418108241-1000:ALLOWED/0x0/0x1e01ff ACL:S-1-1-0:ALLOWED/0x0/R # setcifsacl -a "ACL:S-1-22-2-1004:ALLOWED/0x0/R" /mnt/test/acltest this setacl will cause the following KASAN splat: [ 330.777927] BUG: KASAN: slab-out-of-bounds in send_set_info+0x4dd/0xc20 [cifs] [ 330.779696] Write of size 696 at addr ffff88010d5e2860 by task setcifsacl/1012 [ 330.781882] CPU: 1 PID: 1012 Comm: setcifsacl Not tainted 4.18.0-rc2+ #2 [ 330.783140] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1 04/01/2014 [ 330.784395] Call Trace: [ 330.784789] dump_stack+0xc2/0x16b [ 330.786777] print_address_description+0x6a/0x270 [ 330.787520] kasan_report+0x258/0x380 [ 330.788845] memcpy+0x34/0x50 [ 330.789369] send_set_info+0x4dd/0xc20 [cifs] [ 330.799511] SMB2_set_acl+0x76/0xa0 [cifs] [ 330.801395] set_smb2_acl+0x7ac/0xf30 [cifs] [ 330.830888] cifs_xattr_set+0x963/0xe40 [cifs] [ 330.840367] __vfs_setxattr+0x84/0xb0 [ 330.842060] __vfs_setxattr_noperm+0xe6/0x370 [ 330.843848] vfs_setxattr+0xc2/0xd0 [ 330.845519] setxattr+0x258/0x320 [ 330.859211] path_setxattr+0x15b/0x1b0 [ 330.864392] __x64_sys_setxattr+0xc0/0x160 [ 330.866133] do_syscall_64+0x14e/0x4b0 [ 330.876631] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 330.878503] RIP: 0033:0x7ff2e507db0a [ 330.880151] Code: 48 8b 0d 89 93 2c 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 49 89 ca b8 bc 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 56 93 2c 00 f7 d8 64 89 01 48 [ 330.885358] RSP: 002b:00007ffdc4903c18 EFLAGS: 00000246 ORIG_RAX: 00000000000000bc [ 330.887733] RAX: ffffffffffffffda RBX: 000055d1170de140 RCX: 00007ff2e507db0a [ 330.890067] RDX: 000055d1170de7d0 RSI: 000055d115b39184 RDI: 00007ffdc4904818 [ 330.892410] RBP: 0000000000000001 R08: 0000000000000000 R09: 000055d1170de7e4 [ 330.894785] R10: 00000000000002b8 R11: 0000000000000246 R12: 0000000000000007 [ 330.897148] R13: 000055d1170de0c0 R14: 0000000000000008 R15: 000055d1170de550 [ 330.901057] Allocated by task 1012: [ 330.902888] kasan_kmalloc+0xa0/0xd0 [ 330.904714] kmem_cache_alloc+0xc8/0x1d0 [ 330.906615] mempool_alloc+0x11e/0x380 [ 330.908496] cifs_small_buf_get+0x35/0x60 [cifs] [ 330.910510] smb2_plain_req_init+0x4a/0xd60 [cifs] [ 330.912551] send_set_info+0x198/0xc20 [cifs] [ 330.914535] SMB2_set_acl+0x76/0xa0 [cifs] [ 330.916465] set_smb2_acl+0x7ac/0xf30 [cifs] [ 330.918453] cifs_xattr_set+0x963/0xe40 [cifs] [ 330.920426] __vfs_setxattr+0x84/0xb0 [ 330.922284] __vfs_setxattr_noperm+0xe6/0x370 [ 330.924213] vfs_setxattr+0xc2/0xd0 [ 330.926008] setxattr+0x258/0x320 [ 330.927762] path_setxattr+0x15b/0x1b0 [ 330.929592] __x64_sys_setxattr+0xc0/0x160 [ 330.931459] do_syscall_64+0x14e/0x4b0 [ 330.933314] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 330.936843] Freed by task 0: [ 330.938588] (stack is not available) [ 330.941886] The buggy address belongs to the object at ffff88010d5e2800 which belongs to the cache cifs_small_rq of size 448 [ 330.946362] The buggy address is located 96 bytes inside of 448-byte region [ffff88010d5e2800, ffff88010d5e29c0) [ 330.950722] The buggy address belongs to the page: [ 330.952789] page:ffffea0004357880 count:1 mapcount:0 mapping:ffff880108fdca80 index:0x0 compound_mapcount: 0 [ 330.955665] flags: 0x17ffffc0008100(slab|head) [ 330.957760] raw: 0017ffffc0008100 dead000000000100 dead000000000200 ffff880108fdca80 [ 330.960356] raw: 0000000000000000 0000000080100010 00000001ffffffff 0000000000000000 [ 330.963005] page dumped because: kasan: bad access detected [ 330.967039] Memory state around the buggy address: [ 330.969255] ffff88010d5e2880: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 330.971833] ffff88010d5e2900: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 330.974397] >ffff88010d5e2980: 00 00 00 00 00 00 00 00 fc fc fc fc fc fc fc fc [ 330.976956] ^ [ 330.979226] ffff88010d5e2a00: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [ 330.981755] ffff88010d5e2a80: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [ 330.984225] ================================================================== Fix this by allocating a regular CIFS buffer in smb2_plain_req_init() if the request command is SMB2_SET_INFO. Reported-by: Jianhong Yin <[email protected]> Fixes: 366ed84 ("cifs: Use smb 2 - 3 and cifsacl mount options setacl function") CC: Stable <[email protected]> Signed-off-by: Stefano Brivio <[email protected]> Reviewed-and-tested-by: Aurelien Aptel <[email protected]> Signed-off-by: Steve French <[email protected]> Signed-off-by: Boris Protopopov <[email protected]>
nathan-zcgao
pushed a commit
that referenced
this pull request
May 16, 2025
commit 96611c2 upstream. As reported by syzbot and experienced by Pavel, using cpus_read_lock() in wake_up_all_idle_cpus() generates lock inversion (against mmap_sem and possibly others). Instead, shrink the preempt disable region by iterating all CPUs and checking the online status for each individual CPU while having preemption disabled. Fixes: 8850cb6 ("sched: Simplify wake_up_*idle*()") Reported-by: [email protected] Reported-by: Pavel Machek <[email protected]> Reported-by: Qian Cai <[email protected]> Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Tested-by: Qian Cai <[email protected]> (cherry picked from commit 96611c2)
yifei-aws
pushed a commit
that referenced
this pull request
May 16, 2025
A "small" CIFS buffer is not big enough in general to hold a setacl request for SMB2, and we end up overflowing the buffer in send_set_info(). For instance: # mount.cifs //127.0.0.1/test /mnt/test -o username=test,password=test,nounix,cifsacl # touch /mnt/test/acltest # getcifsacl /mnt/test/acltest REVISION:0x1 CONTROL:0x9004 OWNER:S-1-5-21-2926364953-924364008-418108241-1000 GROUP:S-1-22-2-1001 ACL:S-1-5-21-2926364953-924364008-418108241-1000:ALLOWED/0x0/0x1e01ff ACL:S-1-22-2-1001:ALLOWED/0x0/R ACL:S-1-22-2-1001:ALLOWED/0x0/R ACL:S-1-5-21-2926364953-924364008-418108241-1000:ALLOWED/0x0/0x1e01ff ACL:S-1-1-0:ALLOWED/0x0/R # setcifsacl -a "ACL:S-1-22-2-1004:ALLOWED/0x0/R" /mnt/test/acltest this setacl will cause the following KASAN splat: [ 330.777927] BUG: KASAN: slab-out-of-bounds in send_set_info+0x4dd/0xc20 [cifs] [ 330.779696] Write of size 696 at addr ffff88010d5e2860 by task setcifsacl/1012 [ 330.781882] CPU: 1 PID: 1012 Comm: setcifsacl Not tainted 4.18.0-rc2+ #2 [ 330.783140] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1 04/01/2014 [ 330.784395] Call Trace: [ 330.784789] dump_stack+0xc2/0x16b [ 330.786777] print_address_description+0x6a/0x270 [ 330.787520] kasan_report+0x258/0x380 [ 330.788845] memcpy+0x34/0x50 [ 330.789369] send_set_info+0x4dd/0xc20 [cifs] [ 330.799511] SMB2_set_acl+0x76/0xa0 [cifs] [ 330.801395] set_smb2_acl+0x7ac/0xf30 [cifs] [ 330.830888] cifs_xattr_set+0x963/0xe40 [cifs] [ 330.840367] __vfs_setxattr+0x84/0xb0 [ 330.842060] __vfs_setxattr_noperm+0xe6/0x370 [ 330.843848] vfs_setxattr+0xc2/0xd0 [ 330.845519] setxattr+0x258/0x320 [ 330.859211] path_setxattr+0x15b/0x1b0 [ 330.864392] __x64_sys_setxattr+0xc0/0x160 [ 330.866133] do_syscall_64+0x14e/0x4b0 [ 330.876631] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 330.878503] RIP: 0033:0x7ff2e507db0a [ 330.880151] Code: 48 8b 0d 89 93 2c 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 49 89 ca b8 bc 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 56 93 2c 00 f7 d8 64 89 01 48 [ 330.885358] RSP: 002b:00007ffdc4903c18 EFLAGS: 00000246 ORIG_RAX: 00000000000000bc [ 330.887733] RAX: ffffffffffffffda RBX: 000055d1170de140 RCX: 00007ff2e507db0a [ 330.890067] RDX: 000055d1170de7d0 RSI: 000055d115b39184 RDI: 00007ffdc4904818 [ 330.892410] RBP: 0000000000000001 R08: 0000000000000000 R09: 000055d1170de7e4 [ 330.894785] R10: 00000000000002b8 R11: 0000000000000246 R12: 0000000000000007 [ 330.897148] R13: 000055d1170de0c0 R14: 0000000000000008 R15: 000055d1170de550 [ 330.901057] Allocated by task 1012: [ 330.902888] kasan_kmalloc+0xa0/0xd0 [ 330.904714] kmem_cache_alloc+0xc8/0x1d0 [ 330.906615] mempool_alloc+0x11e/0x380 [ 330.908496] cifs_small_buf_get+0x35/0x60 [cifs] [ 330.910510] smb2_plain_req_init+0x4a/0xd60 [cifs] [ 330.912551] send_set_info+0x198/0xc20 [cifs] [ 330.914535] SMB2_set_acl+0x76/0xa0 [cifs] [ 330.916465] set_smb2_acl+0x7ac/0xf30 [cifs] [ 330.918453] cifs_xattr_set+0x963/0xe40 [cifs] [ 330.920426] __vfs_setxattr+0x84/0xb0 [ 330.922284] __vfs_setxattr_noperm+0xe6/0x370 [ 330.924213] vfs_setxattr+0xc2/0xd0 [ 330.926008] setxattr+0x258/0x320 [ 330.927762] path_setxattr+0x15b/0x1b0 [ 330.929592] __x64_sys_setxattr+0xc0/0x160 [ 330.931459] do_syscall_64+0x14e/0x4b0 [ 330.933314] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 330.936843] Freed by task 0: [ 330.938588] (stack is not available) [ 330.941886] The buggy address belongs to the object at ffff88010d5e2800 which belongs to the cache cifs_small_rq of size 448 [ 330.946362] The buggy address is located 96 bytes inside of 448-byte region [ffff88010d5e2800, ffff88010d5e29c0) [ 330.950722] The buggy address belongs to the page: [ 330.952789] page:ffffea0004357880 count:1 mapcount:0 mapping:ffff880108fdca80 index:0x0 compound_mapcount: 0 [ 330.955665] flags: 0x17ffffc0008100(slab|head) [ 330.957760] raw: 0017ffffc0008100 dead000000000100 dead000000000200 ffff880108fdca80 [ 330.960356] raw: 0000000000000000 0000000080100010 00000001ffffffff 0000000000000000 [ 330.963005] page dumped because: kasan: bad access detected [ 330.967039] Memory state around the buggy address: [ 330.969255] ffff88010d5e2880: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 330.971833] ffff88010d5e2900: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 330.974397] >ffff88010d5e2980: 00 00 00 00 00 00 00 00 fc fc fc fc fc fc fc fc [ 330.976956] ^ [ 330.979226] ffff88010d5e2a00: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [ 330.981755] ffff88010d5e2a80: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [ 330.984225] ================================================================== Fix this by allocating a regular CIFS buffer in smb2_plain_req_init() if the request command is SMB2_SET_INFO. Reported-by: Jianhong Yin <[email protected]> Fixes: 366ed84 ("cifs: Use smb 2 - 3 and cifsacl mount options setacl function") CC: Stable <[email protected]> Signed-off-by: Stefano Brivio <[email protected]> Reviewed-and-tested-by: Aurelien Aptel <[email protected]> Signed-off-by: Steve French <[email protected]> Signed-off-by: Boris Protopopov <[email protected]>
paniakin-aws
pushed a commit
that referenced
this pull request
May 16, 2025
As reported by syzbot and experienced by Pavel, using cpus_read_lock() in wake_up_all_idle_cpus() generates lock inversion (against mmap_sem and possibly others). Instead, shrink the preempt disable region by iterating all CPUs and checking the online status for each individual CPU while having preemption disabled. Fixes: 8850cb6 ("sched: Simplify wake_up_*idle*()") Reported-by: [email protected] Reported-by: Pavel Machek <[email protected]> Reported-by: Qian Cai <[email protected]> Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Tested-by: Qian Cai <[email protected]>
paniakin-aws
pushed a commit
that referenced
this pull request
May 16, 2025
commit f79a609 upstream. log_max_qp in driver's default profile #2 was set to 18, but FW actually supports 17 at the most - a situation that led to the concerning print when the driver is loaded: "log_max_qp value in current profile is 18, changing to HCA capabaility limit (17)" The expected behavior from mlx5_profile #2 is to match the maximum FW capability in regards to log_max_qp. Thus, log_max_qp in profile #2 is initialized to a defined static value (0xff) - which basically means that when loading this profile, log_max_qp value will be what the currently installed FW supports at most. Signed-off-by: Maher Sanalla <[email protected]> Reviewed-by: Maor Gottlieb <[email protected]> Signed-off-by: Saeed Mahameed <[email protected]> [v5.10: replaced prof->log_max_qp with profile[prof_sel].log_max_qp] Signed-off-by: Shaoying Xu <[email protected]>
paniakin-aws
pushed a commit
that referenced
this pull request
May 16, 2025
commit 96611c2 upstream. As reported by syzbot and experienced by Pavel, using cpus_read_lock() in wake_up_all_idle_cpus() generates lock inversion (against mmap_sem and possibly others). Instead, shrink the preempt disable region by iterating all CPUs and checking the online status for each individual CPU while having preemption disabled. Fixes: 8850cb6 ("sched: Simplify wake_up_*idle*()") Reported-by: [email protected] Reported-by: Pavel Machek <[email protected]> Reported-by: Qian Cai <[email protected]> Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Tested-by: Qian Cai <[email protected]> (cherry picked from commit 96611c2)
surajjs95
pushed a commit
that referenced
this pull request
May 16, 2025
As reported by syzbot and experienced by Pavel, using cpus_read_lock() in wake_up_all_idle_cpus() generates lock inversion (against mmap_sem and possibly others). Instead, shrink the preempt disable region by iterating all CPUs and checking the online status for each individual CPU while having preemption disabled. Fixes: 8850cb6 ("sched: Simplify wake_up_*idle*()") Reported-by: [email protected] Reported-by: Pavel Machek <[email protected]> Reported-by: Qian Cai <[email protected]> Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Tested-by: Qian Cai <[email protected]>
surajjs95
pushed a commit
that referenced
this pull request
May 16, 2025
commit f79a609 upstream. log_max_qp in driver's default profile #2 was set to 18, but FW actually supports 17 at the most - a situation that led to the concerning print when the driver is loaded: "log_max_qp value in current profile is 18, changing to HCA capabaility limit (17)" The expected behavior from mlx5_profile #2 is to match the maximum FW capability in regards to log_max_qp. Thus, log_max_qp in profile #2 is initialized to a defined static value (0xff) - which basically means that when loading this profile, log_max_qp value will be what the currently installed FW supports at most. Signed-off-by: Maher Sanalla <[email protected]> Reviewed-by: Maor Gottlieb <[email protected]> Signed-off-by: Saeed Mahameed <[email protected]> [v5.10: replaced prof->log_max_qp with profile[prof_sel].log_max_qp] Signed-off-by: Shaoying Xu <[email protected]>
surajjs95
pushed a commit
that referenced
this pull request
May 16, 2025
A "small" CIFS buffer is not big enough in general to hold a setacl request for SMB2, and we end up overflowing the buffer in send_set_info(). For instance: # mount.cifs //127.0.0.1/test /mnt/test -o username=test,password=test,nounix,cifsacl # touch /mnt/test/acltest # getcifsacl /mnt/test/acltest REVISION:0x1 CONTROL:0x9004 OWNER:S-1-5-21-2926364953-924364008-418108241-1000 GROUP:S-1-22-2-1001 ACL:S-1-5-21-2926364953-924364008-418108241-1000:ALLOWED/0x0/0x1e01ff ACL:S-1-22-2-1001:ALLOWED/0x0/R ACL:S-1-22-2-1001:ALLOWED/0x0/R ACL:S-1-5-21-2926364953-924364008-418108241-1000:ALLOWED/0x0/0x1e01ff ACL:S-1-1-0:ALLOWED/0x0/R # setcifsacl -a "ACL:S-1-22-2-1004:ALLOWED/0x0/R" /mnt/test/acltest this setacl will cause the following KASAN splat: [ 330.777927] BUG: KASAN: slab-out-of-bounds in send_set_info+0x4dd/0xc20 [cifs] [ 330.779696] Write of size 696 at addr ffff88010d5e2860 by task setcifsacl/1012 [ 330.781882] CPU: 1 PID: 1012 Comm: setcifsacl Not tainted 4.18.0-rc2+ #2 [ 330.783140] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1 04/01/2014 [ 330.784395] Call Trace: [ 330.784789] dump_stack+0xc2/0x16b [ 330.786777] print_address_description+0x6a/0x270 [ 330.787520] kasan_report+0x258/0x380 [ 330.788845] memcpy+0x34/0x50 [ 330.789369] send_set_info+0x4dd/0xc20 [cifs] [ 330.799511] SMB2_set_acl+0x76/0xa0 [cifs] [ 330.801395] set_smb2_acl+0x7ac/0xf30 [cifs] [ 330.830888] cifs_xattr_set+0x963/0xe40 [cifs] [ 330.840367] __vfs_setxattr+0x84/0xb0 [ 330.842060] __vfs_setxattr_noperm+0xe6/0x370 [ 330.843848] vfs_setxattr+0xc2/0xd0 [ 330.845519] setxattr+0x258/0x320 [ 330.859211] path_setxattr+0x15b/0x1b0 [ 330.864392] __x64_sys_setxattr+0xc0/0x160 [ 330.866133] do_syscall_64+0x14e/0x4b0 [ 330.876631] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 330.878503] RIP: 0033:0x7ff2e507db0a [ 330.880151] Code: 48 8b 0d 89 93 2c 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 49 89 ca b8 bc 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 56 93 2c 00 f7 d8 64 89 01 48 [ 330.885358] RSP: 002b:00007ffdc4903c18 EFLAGS: 00000246 ORIG_RAX: 00000000000000bc [ 330.887733] RAX: ffffffffffffffda RBX: 000055d1170de140 RCX: 00007ff2e507db0a [ 330.890067] RDX: 000055d1170de7d0 RSI: 000055d115b39184 RDI: 00007ffdc4904818 [ 330.892410] RBP: 0000000000000001 R08: 0000000000000000 R09: 000055d1170de7e4 [ 330.894785] R10: 00000000000002b8 R11: 0000000000000246 R12: 0000000000000007 [ 330.897148] R13: 000055d1170de0c0 R14: 0000000000000008 R15: 000055d1170de550 [ 330.901057] Allocated by task 1012: [ 330.902888] kasan_kmalloc+0xa0/0xd0 [ 330.904714] kmem_cache_alloc+0xc8/0x1d0 [ 330.906615] mempool_alloc+0x11e/0x380 [ 330.908496] cifs_small_buf_get+0x35/0x60 [cifs] [ 330.910510] smb2_plain_req_init+0x4a/0xd60 [cifs] [ 330.912551] send_set_info+0x198/0xc20 [cifs] [ 330.914535] SMB2_set_acl+0x76/0xa0 [cifs] [ 330.916465] set_smb2_acl+0x7ac/0xf30 [cifs] [ 330.918453] cifs_xattr_set+0x963/0xe40 [cifs] [ 330.920426] __vfs_setxattr+0x84/0xb0 [ 330.922284] __vfs_setxattr_noperm+0xe6/0x370 [ 330.924213] vfs_setxattr+0xc2/0xd0 [ 330.926008] setxattr+0x258/0x320 [ 330.927762] path_setxattr+0x15b/0x1b0 [ 330.929592] __x64_sys_setxattr+0xc0/0x160 [ 330.931459] do_syscall_64+0x14e/0x4b0 [ 330.933314] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 330.936843] Freed by task 0: [ 330.938588] (stack is not available) [ 330.941886] The buggy address belongs to the object at ffff88010d5e2800 which belongs to the cache cifs_small_rq of size 448 [ 330.946362] The buggy address is located 96 bytes inside of 448-byte region [ffff88010d5e2800, ffff88010d5e29c0) [ 330.950722] The buggy address belongs to the page: [ 330.952789] page:ffffea0004357880 count:1 mapcount:0 mapping:ffff880108fdca80 index:0x0 compound_mapcount: 0 [ 330.955665] flags: 0x17ffffc0008100(slab|head) [ 330.957760] raw: 0017ffffc0008100 dead000000000100 dead000000000200 ffff880108fdca80 [ 330.960356] raw: 0000000000000000 0000000080100010 00000001ffffffff 0000000000000000 [ 330.963005] page dumped because: kasan: bad access detected [ 330.967039] Memory state around the buggy address: [ 330.969255] ffff88010d5e2880: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 330.971833] ffff88010d5e2900: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 330.974397] >ffff88010d5e2980: 00 00 00 00 00 00 00 00 fc fc fc fc fc fc fc fc [ 330.976956] ^ [ 330.979226] ffff88010d5e2a00: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [ 330.981755] ffff88010d5e2a80: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [ 330.984225] ================================================================== Fix this by allocating a regular CIFS buffer in smb2_plain_req_init() if the request command is SMB2_SET_INFO. Reported-by: Jianhong Yin <[email protected]> Fixes: 366ed84 ("cifs: Use smb 2 - 3 and cifsacl mount options setacl function") CC: Stable <[email protected]> Signed-off-by: Stefano Brivio <[email protected]> Reviewed-and-tested-by: Aurelien Aptel <[email protected]> Signed-off-by: Steve French <[email protected]> Signed-off-by: Boris Protopopov <[email protected]>
paniakin-aws
pushed a commit
that referenced
this pull request
May 18, 2025
…unload Kernel panic occurs when a devmem TCP socket is closed after NIC module is unloaded. This is Devmem TCP unregistration scenarios. number is an order. (a)netlink socket close (b)pp destroy (c)uninstall result 1 2 3 OK 1 3 2 (d)Impossible 2 1 3 OK 3 1 2 (e)Kernel panic 2 3 1 (d)Impossible 3 2 1 (d)Impossible (a) netdev_nl_sock_priv_destroy() is called when devmem TCP socket is closed. (b) page_pool_destroy() is called when the interface is down. (c) mp_ops->uninstall() is called when an interface is unregistered. (d) There is no scenario in mp_ops->uninstall() is called before page_pool_destroy(). Because unregister_netdevice_many_notify() closes interfaces first and then calls mp_ops->uninstall(). (e) netdev_nl_sock_priv_destroy() accesses struct net_device to acquire netdev_lock(). But if the interface module has already been removed, net_device pointer is invalid, so it causes kernel panic. In summary, there are only 3 possible scenarios. A. sk close -> pp destroy -> uninstall. B. pp destroy -> sk close -> uninstall. C. pp destroy -> uninstall -> sk close. Case C is a kernel panic scenario. In order to fix this problem, It makes mp_dmabuf_devmem_uninstall() set binding->dev to NULL. It indicates an bound net_device was unregistered. It makes netdev_nl_sock_priv_destroy() do not acquire netdev_lock() if binding->dev is NULL. A new binding->lock is added to protect a dev of a binding. So, lock ordering is like below. priv->lock netdev_lock(dev) binding->lock Tests: Scenario A: ./ncdevmem -s 192.168.1.4 -c 192.168.1.2 -f $interface -l -p 8000 \ -v 7 -t 1 -q 1 & pid=$! sleep 10 kill $pid ip link set $interface down modprobe -rv $module Scenario B: ./ncdevmem -s 192.168.1.4 -c 192.168.1.2 -f $interface -l -p 8000 \ -v 7 -t 1 -q 1 & pid=$! sleep 10 ip link set $interface down kill $pid modprobe -rv $module Scenario C: ./ncdevmem -s 192.168.1.4 -c 192.168.1.2 -f $interface -l -p 8000 \ -v 7 -t 1 -q 1 & pid=$! sleep 10 modprobe -rv $module sleep 5 kill $pid Splat looks like: Oops: general protection fault, probably for non-canonical address 0xdffffc001fffa9f7: 0000 [#1] SMP DEBUG_PAGEALLOC KASAN NOPTI KASAN: probably user-memory-access in range [0x00000000fffd4fb8-0x00000000fffd4fbf] CPU: 0 UID: 0 PID: 2041 Comm: ncdevmem Tainted: G B W 6.15.0-rc1+ #2 PREEMPT(undef) 0947ec89efa0fd68838b78e36aa1617e97ff5d7f Tainted: [B]=BAD_PAGE, [W]=WARN RIP: 0010:__mutex_lock (./include/linux/sched.h:2244 kernel/locking/mutex.c:400 kernel/locking/mutex.c:443 kernel/locking/mutex.c:605 kernel/locking/mutex.c:746) Code: ea 03 80 3c 02 00 0f 85 4f 13 00 00 49 8b 1e 48 83 e3 f8 74 6a 48 b8 00 00 00 00 00 fc ff df 48 8d 7b 34 48 89 fa 48 c1 ea 03 <0f> b6 f RSP: 0018:ffff88826f7ef730 EFLAGS: 00010203 RAX: dffffc0000000000 RBX: 00000000fffd4f88 RCX: ffffffffaa9bc811 RDX: 000000001fffa9f7 RSI: 0000000000000008 RDI: 00000000fffd4fbc RBP: ffff88826f7ef8b0 R08: 0000000000000000 R09: ffffed103e6aa1a4 R10: 0000000000000007 R11: ffff88826f7ef442 R12: fffffbfff669f65e R13: ffff88812a830040 R14: ffff8881f3550d20 R15: 00000000fffd4f88 FS: 0000000000000000(0000) GS:ffff888866c05000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000563bed0cb288 CR3: 00000001a7c98000 CR4: 00000000007506f0 PKRU: 55555554 Call Trace: <TASK> ... netdev_nl_sock_priv_destroy (net/core/netdev-genl.c:953 (discriminator 3)) genl_release (net/netlink/genetlink.c:653 net/netlink/genetlink.c:694 net/netlink/genetlink.c:705) ... netlink_release (net/netlink/af_netlink.c:737) ... __sock_release (net/socket.c:647) sock_close (net/socket.c:1393) Fixes: 1d22d30 ("net: drop rtnl_lock for queue_mgmt operations") Signed-off-by: Taehee Yoo <[email protected]> Acked-by: Stanislav Fomichev <[email protected]> Link: https://patch.msgid.link/[email protected] Signed-off-by: Jakub Kicinski <[email protected]>
hagarhem
pushed a commit
that referenced
this pull request
May 19, 2025
Aishwarya reports that warnings are sometimes seen when running the ftrace kselftests, e.g. | WARNING: CPU: 5 PID: 2066 at arch/arm64/kernel/stacktrace.c:141 arch_stack_walk+0x4a0/0x4c0 | Modules linked in: | CPU: 5 UID: 0 PID: 2066 Comm: ftracetest Not tainted 6.13.0-rc2 #2 | Hardware name: linux,dummy-virt (DT) | pstate: 604000c5 (nZCv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--) | pc : arch_stack_walk+0x4a0/0x4c0 | lr : arch_stack_walk+0x248/0x4c0 | sp : ffff800083643d20 | x29: ffff800083643dd0 x28: ffff00007b891400 x27: ffff00007b891928 | x26: 0000000000000001 x25: 00000000000000c0 x24: ffff800082f39d80 | x23: ffff80008003ee8c x22: ffff80008004baa8 x21: ffff8000800533e0 | x20: ffff800083643e10 x19: ffff80008003eec8 x18: 0000000000000000 | x17: 0000000000000000 x16: ffff800083640000 x15: 0000000000000000 | x14: 02a37a802bbb8a92 x13: 00000000000001a9 x12: 0000000000000001 | x11: ffff800082ffad60 x10: ffff800083643d20 x9 : ffff80008003eed0 | x8 : ffff80008004baa8 x7 : ffff800086f2be80 x6 : ffff0000057cf000 | x5 : 0000000000000000 x4 : 0000000000000000 x3 : ffff800086f2b690 | x2 : ffff80008004baa8 x1 : ffff80008004baa8 x0 : ffff80008004baa8 | Call trace: | arch_stack_walk+0x4a0/0x4c0 (P) | arch_stack_walk+0x248/0x4c0 (L) | profile_pc+0x44/0x80 | profile_tick+0x50/0x80 (F) | tick_nohz_handler+0xcc/0x160 (F) | __hrtimer_run_queues+0x2ac/0x340 (F) | hrtimer_interrupt+0xf4/0x268 (F) | arch_timer_handler_virt+0x34/0x60 (F) | handle_percpu_devid_irq+0x88/0x220 (F) | generic_handle_domain_irq+0x34/0x60 (F) | gic_handle_irq+0x54/0x140 (F) | call_on_irq_stack+0x24/0x58 (F) | do_interrupt_handler+0x88/0x98 | el1_interrupt+0x34/0x68 (F) | el1h_64_irq_handler+0x18/0x28 | el1h_64_irq+0x6c/0x70 | queued_spin_lock_slowpath+0x78/0x460 (P) The warning in question is: WARN_ON_ONCE(state->common.pc == orig_pc)) ... in kunwind_recover_return_address(), which is triggered when return_to_handler() is encountered in the trace, but ftrace_graph_ret_addr() cannot find a corresponding original return address on the fgraph return stack. This happens because the stacktrace code encounters an exception boundary where the LR was not live at the time of the exception, but the LR happens to contain return_to_handler(); either because the task recently returned there, or due to unfortunate usage of the LR at a scratch register. In such cases attempts to recover the return address via ftrace_graph_ret_addr() may fail, triggering the WARN_ON_ONCE() above and aborting the unwind (hence the stacktrace terminating after reporting the PC at the time of the exception). Handling unreliable LR values in these cases is likely to require some larger rework, so for the moment avoid this problem by restoring the old behaviour of skipping the LR at exception boundaries, which the stacktrace code did prior to commit: c2c6b27 ("arm64: stacktrace: unwind exception boundaries") This commit is effectively a partial revert, keeping the structures and logic to explicitly identify exception boundaries while still skipping reporting of the LR. The logic to explicitly identify exception boundaries is still useful for general robustness and as a building block for future support for RELIABLE_STACKTRACE. Fixes: c2c6b27 ("arm64: stacktrace: unwind exception boundaries") Signed-off-by: Mark Rutland <[email protected]> Reported-by: Aishwarya TCV <[email protected]> Cc: Will Deacon <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Catalin Marinas <[email protected]>
hagarhem
pushed a commit
that referenced
this pull request
May 19, 2025
The arm64 stacktrace code has a few error conditions where a WARN_ON_ONCE() is triggered before the stacktrace is terminated and an error is returned to the caller. The conditions shouldn't be triggered when unwinding the current task, but it is possible to trigger these when unwinding another task which is not blocked, as the stack of that task is concurrently modified. Kent reports that these warnings can be triggered while running filesystem tests on bcachefs, which calls the stacktrace code directly. To produce a meaningful stacktrace of another task, the task in question should be blocked, but the stacktrace code is expected to be robust to cases where it is not blocked. Note that this is purely about not unuduly scaring the user and/or crashing the kernel; stacktraces in such cases are meaningless and may leak kernel secrets from the stack of the task being unwound. Ideally we'd pin the task in a blocked state during the unwind, as we do for /proc/${PID}/wchan since commit: 42a20f8 ("sched: Add wrapper for get_wchan() to keep task blocked") ... but a bunch of places don't do that, notably /proc/${PID}/stack, where we don't pin the task in a blocked state, but do restrict the output to privileged users since commit: f8a00ce ("proc: restrict kernel stack dumps to root") ... and so it's possible to trigger these warnings accidentally, e.g. by reading /proc/*/stack (as root): | for n in $(seq 1 10); do | while true; do cat /proc/*/stack > /dev/null 2>&1; done & | done | ------------[ cut here ]------------ | WARNING: CPU: 3 PID: 166 at arch/arm64/kernel/stacktrace.c:207 arch_stack_walk+0x1c8/0x370 | Modules linked in: | CPU: 3 UID: 0 PID: 166 Comm: cat Not tainted 6.13.0-rc2-00003-g3dafa7a7925d #2 | Hardware name: linux,dummy-virt (DT) | pstate: 81400005 (Nzcv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--) | pc : arch_stack_walk+0x1c8/0x370 | lr : arch_stack_walk+0x1b0/0x370 | sp : ffff800080773890 | x29: ffff800080773930 x28: fff0000005c44500 x27: fff00000058fa038 | x26: 000000007ffff000 x25: 0000000000000000 x24: 0000000000000000 | x23: ffffa35a8d9600ec x22: 0000000000000000 x21: fff00000043a33c0 | x20: ffff800080773970 x19: ffffa35a8d960168 x18: 0000000000000000 | x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000 | x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000 | x11: 0000000000000000 x10: 0000000000000000 x9 : 0000000000000000 | x8 : ffff8000807738e0 x7 : ffff8000806e3800 x6 : ffff8000806e3818 | x5 : ffff800080773920 x4 : ffff8000806e4000 x3 : ffff8000807738e0 | x2 : 0000000000000018 x1 : ffff8000806e3800 x0 : 0000000000000000 | Call trace: | arch_stack_walk+0x1c8/0x370 (P) | stack_trace_save_tsk+0x8c/0x108 | proc_pid_stack+0xb0/0x134 | proc_single_show+0x60/0x120 | seq_read_iter+0x104/0x438 | seq_read+0xf8/0x140 | vfs_read+0xc4/0x31c | ksys_read+0x70/0x108 | __arm64_sys_read+0x1c/0x28 | invoke_syscall+0x48/0x104 | el0_svc_common.constprop.0+0x40/0xe0 | do_el0_svc+0x1c/0x28 | el0_svc+0x30/0xcc | el0t_64_sync_handler+0x10c/0x138 | el0t_64_sync+0x198/0x19c | ---[ end trace 0000000000000000 ]--- Fix this by only warning when unwinding the current task. When unwinding another task the error conditions will be handled by returning an error without producing a warning. The two warnings in kunwind_next_frame_record_meta() were added recently as part of commit: c2c6b27 ("arm64: stacktrace: unwind exception boundaries") The warning when recovering the fgraph return address has changed form many times, but was originally introduced back in commit: 9f41631 ("arm64: fix unwind_frame() for filtered out fn for function graph tracing") Fixes: c2c6b27 ("arm64: stacktrace: unwind exception boundaries") Fixes: 9f41631 ("arm64: fix unwind_frame() for filtered out fn for function graph tracing") Signed-off-by: Mark Rutland <[email protected]> Reported-by: Kent Overstreet <[email protected]> Cc: Kees Cook <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Will Deacon <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Catalin Marinas <[email protected]>
hagarhem
pushed a commit
that referenced
this pull request
May 19, 2025
Aishwarya reports that warnings are sometimes seen when running the ftrace kselftests, e.g. | WARNING: CPU: 5 PID: 2066 at arch/arm64/kernel/stacktrace.c:141 arch_stack_walk+0x4a0/0x4c0 | Modules linked in: | CPU: 5 UID: 0 PID: 2066 Comm: ftracetest Not tainted 6.13.0-rc2 #2 | Hardware name: linux,dummy-virt (DT) | pstate: 604000c5 (nZCv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--) | pc : arch_stack_walk+0x4a0/0x4c0 | lr : arch_stack_walk+0x248/0x4c0 | sp : ffff800083643d20 | x29: ffff800083643dd0 x28: ffff00007b891400 x27: ffff00007b891928 | x26: 0000000000000001 x25: 00000000000000c0 x24: ffff800082f39d80 | x23: ffff80008003ee8c x22: ffff80008004baa8 x21: ffff8000800533e0 | x20: ffff800083643e10 x19: ffff80008003eec8 x18: 0000000000000000 | x17: 0000000000000000 x16: ffff800083640000 x15: 0000000000000000 | x14: 02a37a802bbb8a92 x13: 00000000000001a9 x12: 0000000000000001 | x11: ffff800082ffad60 x10: ffff800083643d20 x9 : ffff80008003eed0 | x8 : ffff80008004baa8 x7 : ffff800086f2be80 x6 : ffff0000057cf000 | x5 : 0000000000000000 x4 : 0000000000000000 x3 : ffff800086f2b690 | x2 : ffff80008004baa8 x1 : ffff80008004baa8 x0 : ffff80008004baa8 | Call trace: | arch_stack_walk+0x4a0/0x4c0 (P) | arch_stack_walk+0x248/0x4c0 (L) | profile_pc+0x44/0x80 | profile_tick+0x50/0x80 (F) | tick_nohz_handler+0xcc/0x160 (F) | __hrtimer_run_queues+0x2ac/0x340 (F) | hrtimer_interrupt+0xf4/0x268 (F) | arch_timer_handler_virt+0x34/0x60 (F) | handle_percpu_devid_irq+0x88/0x220 (F) | generic_handle_domain_irq+0x34/0x60 (F) | gic_handle_irq+0x54/0x140 (F) | call_on_irq_stack+0x24/0x58 (F) | do_interrupt_handler+0x88/0x98 | el1_interrupt+0x34/0x68 (F) | el1h_64_irq_handler+0x18/0x28 | el1h_64_irq+0x6c/0x70 | queued_spin_lock_slowpath+0x78/0x460 (P) The warning in question is: WARN_ON_ONCE(state->common.pc == orig_pc)) ... in kunwind_recover_return_address(), which is triggered when return_to_handler() is encountered in the trace, but ftrace_graph_ret_addr() cannot find a corresponding original return address on the fgraph return stack. This happens because the stacktrace code encounters an exception boundary where the LR was not live at the time of the exception, but the LR happens to contain return_to_handler(); either because the task recently returned there, or due to unfortunate usage of the LR at a scratch register. In such cases attempts to recover the return address via ftrace_graph_ret_addr() may fail, triggering the WARN_ON_ONCE() above and aborting the unwind (hence the stacktrace terminating after reporting the PC at the time of the exception). Handling unreliable LR values in these cases is likely to require some larger rework, so for the moment avoid this problem by restoring the old behaviour of skipping the LR at exception boundaries, which the stacktrace code did prior to commit: c2c6b27 ("arm64: stacktrace: unwind exception boundaries") This commit is effectively a partial revert, keeping the structures and logic to explicitly identify exception boundaries while still skipping reporting of the LR. The logic to explicitly identify exception boundaries is still useful for general robustness and as a building block for future support for RELIABLE_STACKTRACE. Fixes: c2c6b27 ("arm64: stacktrace: unwind exception boundaries") Signed-off-by: Mark Rutland <[email protected]> Reported-by: Aishwarya TCV <[email protected]> Cc: Will Deacon <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Catalin Marinas <[email protected]>
hagarhem
pushed a commit
that referenced
this pull request
May 19, 2025
The arm64 stacktrace code has a few error conditions where a WARN_ON_ONCE() is triggered before the stacktrace is terminated and an error is returned to the caller. The conditions shouldn't be triggered when unwinding the current task, but it is possible to trigger these when unwinding another task which is not blocked, as the stack of that task is concurrently modified. Kent reports that these warnings can be triggered while running filesystem tests on bcachefs, which calls the stacktrace code directly. To produce a meaningful stacktrace of another task, the task in question should be blocked, but the stacktrace code is expected to be robust to cases where it is not blocked. Note that this is purely about not unuduly scaring the user and/or crashing the kernel; stacktraces in such cases are meaningless and may leak kernel secrets from the stack of the task being unwound. Ideally we'd pin the task in a blocked state during the unwind, as we do for /proc/${PID}/wchan since commit: 42a20f8 ("sched: Add wrapper for get_wchan() to keep task blocked") ... but a bunch of places don't do that, notably /proc/${PID}/stack, where we don't pin the task in a blocked state, but do restrict the output to privileged users since commit: f8a00ce ("proc: restrict kernel stack dumps to root") ... and so it's possible to trigger these warnings accidentally, e.g. by reading /proc/*/stack (as root): | for n in $(seq 1 10); do | while true; do cat /proc/*/stack > /dev/null 2>&1; done & | done | ------------[ cut here ]------------ | WARNING: CPU: 3 PID: 166 at arch/arm64/kernel/stacktrace.c:207 arch_stack_walk+0x1c8/0x370 | Modules linked in: | CPU: 3 UID: 0 PID: 166 Comm: cat Not tainted 6.13.0-rc2-00003-g3dafa7a7925d #2 | Hardware name: linux,dummy-virt (DT) | pstate: 81400005 (Nzcv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--) | pc : arch_stack_walk+0x1c8/0x370 | lr : arch_stack_walk+0x1b0/0x370 | sp : ffff800080773890 | x29: ffff800080773930 x28: fff0000005c44500 x27: fff00000058fa038 | x26: 000000007ffff000 x25: 0000000000000000 x24: 0000000000000000 | x23: ffffa35a8d9600ec x22: 0000000000000000 x21: fff00000043a33c0 | x20: ffff800080773970 x19: ffffa35a8d960168 x18: 0000000000000000 | x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000 | x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000 | x11: 0000000000000000 x10: 0000000000000000 x9 : 0000000000000000 | x8 : ffff8000807738e0 x7 : ffff8000806e3800 x6 : ffff8000806e3818 | x5 : ffff800080773920 x4 : ffff8000806e4000 x3 : ffff8000807738e0 | x2 : 0000000000000018 x1 : ffff8000806e3800 x0 : 0000000000000000 | Call trace: | arch_stack_walk+0x1c8/0x370 (P) | stack_trace_save_tsk+0x8c/0x108 | proc_pid_stack+0xb0/0x134 | proc_single_show+0x60/0x120 | seq_read_iter+0x104/0x438 | seq_read+0xf8/0x140 | vfs_read+0xc4/0x31c | ksys_read+0x70/0x108 | __arm64_sys_read+0x1c/0x28 | invoke_syscall+0x48/0x104 | el0_svc_common.constprop.0+0x40/0xe0 | do_el0_svc+0x1c/0x28 | el0_svc+0x30/0xcc | el0t_64_sync_handler+0x10c/0x138 | el0t_64_sync+0x198/0x19c | ---[ end trace 0000000000000000 ]--- Fix this by only warning when unwinding the current task. When unwinding another task the error conditions will be handled by returning an error without producing a warning. The two warnings in kunwind_next_frame_record_meta() were added recently as part of commit: c2c6b27 ("arm64: stacktrace: unwind exception boundaries") The warning when recovering the fgraph return address has changed form many times, but was originally introduced back in commit: 9f41631 ("arm64: fix unwind_frame() for filtered out fn for function graph tracing") Fixes: c2c6b27 ("arm64: stacktrace: unwind exception boundaries") Fixes: 9f41631 ("arm64: fix unwind_frame() for filtered out fn for function graph tracing") Signed-off-by: Mark Rutland <[email protected]> Reported-by: Kent Overstreet <[email protected]> Cc: Kees Cook <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Will Deacon <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Catalin Marinas <[email protected]>
jaywang-amazon
pushed a commit
that referenced
this pull request
May 19, 2025
As reported by syzbot and experienced by Pavel, using cpus_read_lock() in wake_up_all_idle_cpus() generates lock inversion (against mmap_sem and possibly others). Instead, shrink the preempt disable region by iterating all CPUs and checking the online status for each individual CPU while having preemption disabled. Fixes: 8850cb6 ("sched: Simplify wake_up_*idle*()") Reported-by: [email protected] Reported-by: Pavel Machek <[email protected]> Reported-by: Qian Cai <[email protected]> Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Tested-by: Qian Cai <[email protected]>
jaywang-amazon
pushed a commit
that referenced
this pull request
May 19, 2025
commit f79a609 upstream. log_max_qp in driver's default profile #2 was set to 18, but FW actually supports 17 at the most - a situation that led to the concerning print when the driver is loaded: "log_max_qp value in current profile is 18, changing to HCA capabaility limit (17)" The expected behavior from mlx5_profile #2 is to match the maximum FW capability in regards to log_max_qp. Thus, log_max_qp in profile #2 is initialized to a defined static value (0xff) - which basically means that when loading this profile, log_max_qp value will be what the currently installed FW supports at most. Signed-off-by: Maher Sanalla <[email protected]> Reviewed-by: Maor Gottlieb <[email protected]> Signed-off-by: Saeed Mahameed <[email protected]> [v5.10: replaced prof->log_max_qp with profile[prof_sel].log_max_qp] Signed-off-by: Shaoying Xu <[email protected]>
jaywang-amazon
pushed a commit
that referenced
this pull request
May 20, 2025
As reported by syzbot and experienced by Pavel, using cpus_read_lock() in wake_up_all_idle_cpus() generates lock inversion (against mmap_sem and possibly others). Instead, shrink the preempt disable region by iterating all CPUs and checking the online status for each individual CPU while having preemption disabled. Fixes: 8850cb6 ("sched: Simplify wake_up_*idle*()") Reported-by: [email protected] Reported-by: Pavel Machek <[email protected]> Reported-by: Qian Cai <[email protected]> Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Tested-by: Qian Cai <[email protected]>
jaywang-amazon
pushed a commit
that referenced
this pull request
May 20, 2025
commit f79a609 upstream. log_max_qp in driver's default profile #2 was set to 18, but FW actually supports 17 at the most - a situation that led to the concerning print when the driver is loaded: "log_max_qp value in current profile is 18, changing to HCA capabaility limit (17)" The expected behavior from mlx5_profile #2 is to match the maximum FW capability in regards to log_max_qp. Thus, log_max_qp in profile #2 is initialized to a defined static value (0xff) - which basically means that when loading this profile, log_max_qp value will be what the currently installed FW supports at most. Signed-off-by: Maher Sanalla <[email protected]> Reviewed-by: Maor Gottlieb <[email protected]> Signed-off-by: Saeed Mahameed <[email protected]> [v5.10: replaced prof->log_max_qp with profile[prof_sel].log_max_qp] Signed-off-by: Shaoying Xu <[email protected]>
shaoyingxu
pushed a commit
that referenced
this pull request
May 20, 2025
commit 96611c2 upstream. As reported by syzbot and experienced by Pavel, using cpus_read_lock() in wake_up_all_idle_cpus() generates lock inversion (against mmap_sem and possibly others). Instead, shrink the preempt disable region by iterating all CPUs and checking the online status for each individual CPU while having preemption disabled. Fixes: 8850cb6 ("sched: Simplify wake_up_*idle*()") Reported-by: [email protected] Reported-by: Pavel Machek <[email protected]> Reported-by: Qian Cai <[email protected]> Signed-off-by: Peter Zijlstra (Intel) <[email protected]> Tested-by: Qian Cai <[email protected]> (cherry picked from commit 96611c2)
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Issue #, if available:
vewe-richard#1
Description of changes:
Do not call generic_file_buffered_read() directly, call generic_file_read_iter() which will check number of iov to read, and return immediately when the number of iov is zero.
Else, generic_file_buffered_read() will fall into an infinite loop, eat up all cpu resources, cause system lockup.