Skip to content

bpftool: fix C++ additions to skeleton #23

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 1 commit into from

Conversation

kernel-patches-bot
Copy link

Pull request for series with
subject: bpftool: fix C++ additions to skeleton
version: 1
url: https://patchwork.kernel.org/project/netdevbpf/list/?series=615167

@kernel-patches-bot
Copy link
Author

Master branch: f76d850
series: https://patchwork.kernel.org/project/netdevbpf/list/?series=615167
version: 1

@kernel-patches-bot
Copy link
Author

Master branch: 9b6eb04
series: https://patchwork.kernel.org/project/netdevbpf/list/?series=615167
version: 1

@kernel-patches-bot
Copy link
Author

At least one diff in series https://patchwork.kernel.org/project/netdevbpf/list/?series=615167 irrelevant now. Closing PR.

@kernel-patches-bot kernel-patches-bot deleted the series/615167=>bpf-next branch February 17, 2022 01:11
kernel-patches-bot pushed a commit that referenced this pull request Feb 18, 2022
When bringing down the netdevice or system shutdown, a panic can be
triggered while accessing the sysfs path because the device is already
removed.

    [  755.549084] mlx5_core 0000:12:00.1: Shutdown was called
    [  756.404455] mlx5_core 0000:12:00.0: Shutdown was called
    ...
    [  757.937260] BUG: unable to handle kernel NULL pointer dereference at           (null)
    [  758.031397] IP: [<ffffffff8ee11acb>] dma_pool_alloc+0x1ab/0x280

    crash> bt
    ...
    PID: 12649  TASK: ffff8924108f2100  CPU: 1   COMMAND: "amsd"
    ...
     #9 [ffff89240e1a38b0] page_fault at ffffffff8f38c778
        [exception RIP: dma_pool_alloc+0x1ab]
        RIP: ffffffff8ee11acb  RSP: ffff89240e1a3968  RFLAGS: 00010046
        RAX: 0000000000000246  RBX: ffff89243d874100  RCX: 0000000000001000
        RDX: 0000000000000000  RSI: 0000000000000246  RDI: ffff89243d874090
        RBP: ffff89240e1a39c0   R8: 000000000001f080   R9: ffff8905ffc03c00
        R10: ffffffffc04680d4  R11: ffffffff8edde9fd  R12: 00000000000080d0
        R13: ffff89243d874090  R14: ffff89243d874080  R15: 0000000000000000
        ORIG_RAX: ffffffffffffffff  CS: 0010  SS: 0018
    #10 [ffff89240e1a39c8] mlx5_alloc_cmd_msg at ffffffffc04680f3 [mlx5_core]
    #11 [ffff89240e1a3a18] cmd_exec at ffffffffc046ad62 [mlx5_core]
    #12 [ffff89240e1a3ab8] mlx5_cmd_exec at ffffffffc046b4fb [mlx5_core]
    #13 [ffff89240e1a3ae8] mlx5_core_access_reg at ffffffffc0475434 [mlx5_core]
    #14 [ffff89240e1a3b40] mlx5e_get_fec_caps at ffffffffc04a7348 [mlx5_core]
    #15 [ffff89240e1a3bb0] get_fec_supported_advertised at ffffffffc04992bf [mlx5_core]
    #16 [ffff89240e1a3c08] mlx5e_get_link_ksettings at ffffffffc049ab36 [mlx5_core]
    #17 [ffff89240e1a3ce8] __ethtool_get_link_ksettings at ffffffff8f25db46
    #18 [ffff89240e1a3d48] speed_show at ffffffff8f277208
    #19 [ffff89240e1a3dd8] dev_attr_show at ffffffff8f0b70e3
    #20 [ffff89240e1a3df8] sysfs_kf_seq_show at ffffffff8eedbedf
    #21 [ffff89240e1a3e18] kernfs_seq_show at ffffffff8eeda596
    #22 [ffff89240e1a3e28] seq_read at ffffffff8ee76d10
    #23 [ffff89240e1a3e98] kernfs_fop_read at ffffffff8eedaef5
    #24 [ffff89240e1a3ed8] vfs_read at ffffffff8ee4e3ff
    #25 [ffff89240e1a3f08] sys_read at ffffffff8ee4f27f
    #26 [ffff89240e1a3f50] system_call_fastpath at ffffffff8f395f92

    crash> net_device.state ffff89443b0c0000
      state = 0x5  (__LINK_STATE_START| __LINK_STATE_NOCARRIER)

To prevent this scenario, we also make sure that the netdevice is present.

Signed-off-by: suresh kumar <[email protected]>
Signed-off-by: David S. Miller <[email protected]>
kernel-patches-bot pushed a commit that referenced this pull request May 12, 2022
We enabled UBSAN in the ubuntu kernel, and the cs35l41 driver triggers
a warning calltrace like below:

cs35l41-hda i2c-CSC3551:00-cs35l41-hda.0: bitoffset= 8, word_offset=23, bit_sum mod 32=0, otp_map[i].size = 24
cs35l41-hda i2c-CSC3551:00-cs35l41-hda.0: bitoffset= 0, word_offset=24, bit_sum mod 32=24, otp_map[i].size = 0
================================================================================
UBSAN: shift-out-of-bounds in linux-kernel-src/sound/soc/codecs/cs35l41-lib.c:836:8
shift exponent 64 is too large for 64-bit type 'long unsigned int'
CPU: 10 PID: 595 Comm: systemd-udevd Not tainted 5.15.0-23-generic #23
Hardware name: LENOVO \x02MFG_IN_GO/\x02MFG_IN_GO, BIOS N3GET19W (1.00 ) 03/11/2022
Call Trace:
 <TASK>
 show_stack+0x52/0x58
 dump_stack_lvl+0x4a/0x5f
 dump_stack+0x10/0x12
 ubsan_epilogue+0x9/0x45
 __ubsan_handle_shift_out_of_bounds.cold+0x61/0xef
 ? regmap_unlock_mutex+0xe/0x10
 cs35l41_otp_unpack.cold+0x1c6/0x2b2 [snd_soc_cs35l41_lib]
 cs35l41_hda_probe+0x24f/0x33a [snd_hda_scodec_cs35l41]
 cs35l41_hda_i2c_probe+0x65/0x90 [snd_hda_scodec_cs35l41_i2c]

When both bitoffset and otp_map[i].size are 0, the line 836 will
result in GENMASK(-1, 0), this triggers the shift-out-of-bounds
calltrace.

Here add a checking, if both bitoffset and otp_map[i].size are 0,
do not run GENMASK() and directly set otp_val to 0, this will not
bring any function change on the driver but could avoid the calltrace.

Signed-off-by: Hui Wang <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Mark Brown <[email protected]>
kernel-patches-bot pushed a commit that referenced this pull request Oct 4, 2022
After modifying the QP to the Error state, all RX WR would be completed
with WC in IB_WC_WR_FLUSH_ERR status. Current implementation does not
wait for it is done, but destroy the QP and free the link group directly.
So there is a risk that accessing the freed memory in tasklet context.

Here is a crash example:

 BUG: unable to handle page fault for address: ffffffff8f220860
 #PF: supervisor write access in kernel mode
 #PF: error_code(0x0002) - not-present page
 PGD f7300e067 P4D f7300e067 PUD f7300f063 PMD 8c4e45063 PTE 800ffff08c9df060
 Oops: 0002 [#1] SMP PTI
 CPU: 1 PID: 0 Comm: swapper/1 Kdump: loaded Tainted: G S         OE     5.10.0-0607+ #23
 Hardware name: Inspur NF5280M4/YZMB-00689-101, BIOS 4.1.20 07/09/2018
 RIP: 0010:native_queued_spin_lock_slowpath+0x176/0x1b0
 Code: f3 90 48 8b 32 48 85 f6 74 f6 eb d5 c1 ee 12 83 e0 03 83 ee 01 48 c1 e0 05 48 63 f6 48 05 00 c8 02 00 48 03 04 f5 00 09 98 8e <48> 89 10 8b 42 08 85 c0 75 09 f3 90 8b 42 08 85 c0 74 f7 48 8b 32
 RSP: 0018:ffffb3b6c001ebd8 EFLAGS: 00010086
 RAX: ffffffff8f220860 RBX: 0000000000000246 RCX: 0000000000080000
 RDX: ffff91db1f86c800 RSI: 000000000000173c RDI: ffff91db62bace00
 RBP: ffff91db62bacc00 R08: 0000000000000000 R09: c00000010000028b
 R10: 0000000000055198 R11: ffffb3b6c001ea58 R12: ffff91db80e05010
 R13: 000000000000000a R14: 0000000000000006 R15: 0000000000000040
 FS:  0000000000000000(0000) GS:ffff91db1f840000(0000) knlGS:0000000000000000
 CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
 CR2: ffffffff8f220860 CR3: 00000001f9580004 CR4: 00000000003706e0
 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
 Call Trace:
  <IRQ>
  _raw_spin_lock_irqsave+0x30/0x40
  mlx5_ib_poll_cq+0x4c/0xc50 [mlx5_ib]
  smc_wr_rx_tasklet_fn+0x56/0xa0 [smc]
  tasklet_action_common.isra.21+0x66/0x100
  __do_softirq+0xd5/0x29c
  asm_call_irq_on_stack+0x12/0x20
  </IRQ>
  do_softirq_own_stack+0x37/0x40
  irq_exit_rcu+0x9d/0xa0
  sysvec_call_function_single+0x34/0x80
  asm_sysvec_call_function_single+0x12/0x20

Fixes: bd4ad57 ("smc: initialize IB transport incl. PD, MR, QP, CQ, event, WR")
Signed-off-by: Yacan Liu <[email protected]>
Reviewed-by: Tony Lu <[email protected]>
Signed-off-by: David S. Miller <[email protected]>
kernel-patches-bot pushed a commit that referenced this pull request Oct 24, 2022
Fix port I/O string accessors such as `insb', `outsb', etc. which use
the physical PCI port I/O address rather than the corresponding memory
mapping to get at the requested location, which in turn breaks at least
accesses made by our parport driver to a PCIe parallel port such as:

PCI parallel port detected: 1415:c118, I/O at 0x1000(0x1008), IRQ 20
parport0: PC-style at 0x1000 (0x1008), irq 20, using FIFO [PCSPP,TRISTATE,COMPAT,EPP,ECP]

causing a memory access fault:

Unable to handle kernel access to user memory without uaccess routines at virtual address 0000000000001008
Oops [#1]
Modules linked in:
CPU: 1 PID: 350 Comm: cat Not tainted 6.0.0-rc2-00283-g10d4879f9ef0-dirty #23
Hardware name: SiFive HiFive Unmatched A00 (DT)
epc : parport_pc_fifo_write_block_pio+0x266/0x416
 ra : parport_pc_fifo_write_block_pio+0xb4/0x416
epc : ffffffff80542c3e ra : ffffffff80542a8c sp : ffffffd88899fc60
 gp : ffffffff80fa2700 tp : ffffffd882b1e900 t0 : ffffffd883d0b000
 t1 : ffffffffff000002 t2 : 4646393043330a38 s0 : ffffffd88899fcf0
 s1 : 0000000000001000 a0 : 0000000000000010 a1 : 0000000000000000
 a2 : ffffffd883d0a010 a3 : 0000000000000023 a4 : 00000000ffff8fbb
 a5 : ffffffd883d0a001 a6 : 0000000100000000 a7 : ffffffc800000000
 s2 : ffffffffff000002 s3 : ffffffff80d28880 s4 : ffffffff80fa1f50
 s5 : 0000000000001008 s6 : 0000000000000008 s7 : ffffffd883d0a000
 s8 : 0004000000000000 s9 : ffffffff80dc1d80 s10: ffffffd8807e4000
 s11: 0000000000000000 t3 : 00000000000000ff t4 : 393044410a303930
 t5 : 0000000000001000 t6 : 0000000000040000
status: 0000000200000120 badaddr: 0000000000001008 cause: 000000000000000f
[<ffffffff80543212>] parport_pc_compat_write_block_pio+0xfe/0x200
[<ffffffff8053bbc0>] parport_write+0x46/0xf8
[<ffffffff8050530e>] lp_write+0x158/0x2d2
[<ffffffff80185716>] vfs_write+0x8e/0x2c2
[<ffffffff80185a74>] ksys_write+0x52/0xc2
[<ffffffff80185af2>] sys_write+0xe/0x16
[<ffffffff80003770>] ret_from_syscall+0x0/0x2
---[ end trace 0000000000000000 ]---

For simplicity address the problem by adding PCI_IOBASE to the physical
address requested in the respective wrapper macros only, observing that
the raw accessors such as `__insb', `__outsb', etc. are not supposed to
be used other than by said macros.  Remove the cast to `long' that is no
longer needed on `addr' now that it is used as an offset from PCI_IOBASE
and add parentheses around `addr' needed for predictable evaluation in
macro expansion.  No need to make said adjustments in separate changes
given that current code is gravely broken and does not ever work.

Signed-off-by: Maciej W. Rozycki <[email protected]>
Fixes: fab957c ("RISC-V: Atomic and Locking Code")
Cc: [email protected] # v4.15+
Reviewed-by: Arnd Bergmann <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Palmer Dabbelt <[email protected]>
kernel-patches-bot pushed a commit that referenced this pull request Mar 24, 2023
The UAF bug occurred because we were putting DFS root sessions in
cifs_umount() while DFS cache refresher was being executed.

Make DFS root sessions have same lifetime as DFS tcons so we can avoid
the use-after-free bug is DFS cache refresher and other places that
require IPCs to get new DFS referrals on.  Also, get rid of mount
group handling in DFS cache as we no longer need it.

This fixes below use-after-free bug catched by KASAN

[ 379.946955] BUG: KASAN: use-after-free in __refresh_tcon.isra.0+0x10b/0xc10 [cifs]
[ 379.947642] Read of size 8 at addr ffff888018f57030 by task kworker/u4:3/56
[ 379.948096]
[ 379.948208] CPU: 0 PID: 56 Comm: kworker/u4:3 Not tainted 6.2.0-rc7-lku #23
[ 379.948661] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS
rel-1.16.0-0-gd239552-rebuilt.opensuse.org 04/01/2014
[ 379.949368] Workqueue: cifs-dfscache refresh_cache_worker [cifs]
[ 379.949942] Call Trace:
[ 379.950113] <TASK>
[ 379.950260] dump_stack_lvl+0x50/0x67
[ 379.950510] print_report+0x16a/0x48e
[ 379.950759] ? __virt_addr_valid+0xd8/0x160
[ 379.951040] ? __phys_addr+0x41/0x80
[ 379.951285] kasan_report+0xdb/0x110
[ 379.951533] ? __refresh_tcon.isra.0+0x10b/0xc10 [cifs]
[ 379.952056] ? __refresh_tcon.isra.0+0x10b/0xc10 [cifs]
[ 379.952585] __refresh_tcon.isra.0+0x10b/0xc10 [cifs]
[ 379.953096] ? __pfx___refresh_tcon.isra.0+0x10/0x10 [cifs]
[ 379.953637] ? __pfx___mutex_lock+0x10/0x10
[ 379.953915] ? lock_release+0xb6/0x720
[ 379.954167] ? __pfx_lock_acquire+0x10/0x10
[ 379.954443] ? refresh_cache_worker+0x34e/0x6d0 [cifs]
[ 379.954960] ? __pfx_wb_workfn+0x10/0x10
[ 379.955239] refresh_cache_worker+0x4ad/0x6d0 [cifs]
[ 379.955755] ? __pfx_refresh_cache_worker+0x10/0x10 [cifs]
[ 379.956323] ? __pfx_lock_acquired+0x10/0x10
[ 379.956615] ? read_word_at_a_time+0xe/0x20
[ 379.956898] ? lockdep_hardirqs_on_prepare+0x12/0x220
[ 379.957235] process_one_work+0x535/0x990
[ 379.957509] ? __pfx_process_one_work+0x10/0x10
[ 379.957812] ? lock_acquired+0xb7/0x5f0
[ 379.958069] ? __list_add_valid+0x37/0xd0
[ 379.958341] ? __list_add_valid+0x37/0xd0
[ 379.958611] worker_thread+0x8e/0x630
[ 379.958861] ? __pfx_worker_thread+0x10/0x10
[ 379.959148] kthread+0x17d/0x1b0
[ 379.959369] ? __pfx_kthread+0x10/0x10
[ 379.959630] ret_from_fork+0x2c/0x50
[ 379.959879] </TASK>

Signed-off-by: Paulo Alcantara (SUSE) <[email protected]>
Cc: [email protected] # 6.2
Signed-off-by: Steve French <[email protected]>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Apr 26, 2023
Add support precision backtracking in the presence of subprogram frames in
jump history.

This means supporting a few different kinds of subprogram invocation
situations, all requiring a slightly different handling in precision
backtracking handling logic:
  - static subprogram calls;
  - global subprogram calls;
  - callback-calling helpers/kfuncs.

For each of those we need to handle a few precision propagation cases:
  - what to do with precision of subprog returns (r0);
  - what to do with precision of input arguments;
  - for all of them callee-saved registers in caller function should be
    propagated ignoring subprog/callback part of jump history.

N.B. Async callback-calling helpers (currently only
bpf_timer_set_callback()) are transparent to all this because they set
a separate async callback environment and thus callback's history is not
shared with main program's history. So as far as all the changes in this
commit goes, such helper is just a regular helper.

Let's look at all these situation in more details. Let's start with
static subprogram being called, using an exxerpt of a simple main
program and its static subprog, indenting subprog's frame slightly to
make everything clear.

frame 0				frame 1			precision set
=======				=======			=============

 9: r6 = 456;
10: r1 = 123;						r6
11: call pc+10;						r1, r6
				22: r0 = r1;		r1
				23: exit		r0
12: r1 = <map_pointer>					r0, r6
13: r1 += r0;						r0, r6
14: r1 += r6;						r6;
15: exit

As can be seen above main function is passing 123 as single argument to
an identity (`return x;`) subprog. Returned value is used to adjust map
pointer offset, which forces r0 to be marked as precise. Then
instruction #14 does the same for callee-saved r6, which will have to be
backtracked all the way to instruction #9. For brevity, precision sets
for instruction #13 and #14 are combined in the diagram above.

First, for subprog calls, r0 returned from subprog (in frame 0) has to
go into subprog's frame 1, and should be cleared from frame 0. So we go
back into subprog's frame knowing we need to mark r0 precise. We then
see that insn #22 sets r0 from r1, so now we care about marking r1
precise.  When we pop up from subprog's frame back into caller at
insn #11 we keep r1, as it's an argument-passing register, so we eventually
find `10: r1 = 123;` and satify precision propagation chain for insn #13.

This example demonstrates two sets of rules:
  - r0 returned after subprog call has to be moved into subprog's r0 set;
  - *static* subprog arguments (r1-r5) are moved back to caller precision set.

Let's look at what happens with callee-saved precision propagation. Insn #14
mark r6 as precise. When we get into subprog's frame, we keep r6 in
frame 0's precision set *only*. Subprog itself has its own set of
independent r6-r10 registers and is not affected. When we eventually
made our way out of subprog frame we keep r6 in precision set until we
reach `9: r6 = 456;`, satisfying propagation. r6-r10 propagation is
perhaps the simplest aspect, it always stays in its original frame.

That's pretty much all we have to do to support precision propagation
across *static subprog* invocation.

Let's look at what happens when we have global subprog invocation.

frame 0				frame 1			precision set
=======				=======			=============

 9: r6 = 456;
10: r1 = 123;						r6
11: call pc+10; # global subprog			r6
12: r1 = <map_pointer>					r0, r6
13: r1 += r0;						r0, r6
14: r1 += r6;						r6;
15: exit

Starting from insn #13, r0 has to be precise. We backtrack all the way
to insn #11 (call pc+10) and see that subprog is global, so was already
validated in isolation. As opposed to static subprog, global subprog
always returns unknown scalar r0, so that satisfies precision
propagation and we drop r0 from precision set. We are done for insns #13.

Now for insn #14. r6 is in precision set, we backtrack to `call pc+10;`.
Here we need to recognize that this is effectively both exit and entry
to global subprog, which means we stay in caller's frame. So we carry on
with r6 still in precision set, until we satisfy it at insn #9. The only
hard part with global subprogs is just knowing when it's a global func.

Lastly, callback-calling helpers and kfuncs do simulate subprog calls,
so jump history will have subprog instructions in between caller
program's instructions, but the rules of propagating r0 and r1-r5
differ, because we don't actually directly call callback. We actually
call helper/kfunc, which at runtime will call subprog, so the only
difference between normal helper/kfunc handling is that we need to make
sure to skip callback simulatinog part of jump history.
Let's look at an example to make this clearer.

frame 0				frame 1			precision set
=======				=======			=============

 8: r6 = 456;
 9: r1 = 123;						r6
10: r2 = &callback;					r6
11: call bpf_loop;					r6
				22: r0 = r1;
				23: exit
12: r1 = <map_pointer>					r0, r6
13: r1 += r0;						r0, r6
14: r1 += r6;						r6;
15: exit

Again, insn #13 forces r0 to be precise. As soon as we get to `23: exit`
we see that this isn't actually a static subprog call (it's `call
bpf_loop;` helper call instead). So we clear r0 from precision set.

For callee-saved register, there is no difference: it stays in frame 0's
precision set, we go through insn #22 and #23, ignoring them until we
get back to caller frame 0, eventually satisfying precision backtrack
logic at insn #8 (`r6 = 456;`).

Assuming callback needed to set r0 as precise at insn #23, we'd
backtrack to insn #22, switching from r0 to r1, and then at the point
when we pop back to frame 0 at insn #11, we'll clear r1-r5 from
precision set, as we don't really do a subprog call directly, so there
is no input argument precision propagation.

That's pretty much it. With these changes, it seems like the only still
unsupported situation for precision backpropagation is the case when
program is accessing stack through registers other than r10. This is
still left as unsupported (though rare) case for now.

As for results. For selftests, few positive changes for bigger programs,
cls_redirect in dynptr variant benefitting the most:

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results.csv ~/subprog-precise-after-results.csv -f @veristat.cfg -e file,prog,insns -f 'insns_diff!=0'
File                                      Program        Insns (A)  Insns (B)  Insns     (DIFF)
----------------------------------------  -------------  ---------  ---------  ----------------
pyperf600_bpf_loop.bpf.linked1.o          on_event            2060       2002      -58 (-2.82%)
test_cls_redirect_dynptr.bpf.linked1.o    cls_redirect       15660       2914  -12746 (-81.39%)
test_cls_redirect_subprogs.bpf.linked1.o  cls_redirect       61620      59088    -2532 (-4.11%)
xdp_synproxy_kern.bpf.linked1.o           syncookie_tc      109980      86278  -23702 (-21.55%)
xdp_synproxy_kern.bpf.linked1.o           syncookie_xdp      97716      85147  -12569 (-12.86%)

Cilium progress don't really regress. They don't use subprogs and are
mostly unaffected, but some other fixes and improvements could have
changed something. This doesn't appear to be the case:

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-cilium.csv ~/subprog-precise-after-results-cilium.csv -e file,prog,insns -f 'insns_diff!=0'
File           Program                         Insns (A)  Insns (B)  Insns (DIFF)
-------------  ------------------------------  ---------  ---------  ------------
bpf_host.o     tail_nodeport_nat_ingress_ipv6       4983       5003  +20 (+0.40%)
bpf_lxc.o      tail_nodeport_nat_ingress_ipv6       4983       5003  +20 (+0.40%)
bpf_overlay.o  tail_nodeport_nat_ingress_ipv6       4983       5003  +20 (+0.40%)
bpf_xdp.o      tail_handle_nat_fwd_ipv6            12475      12504  +29 (+0.23%)
bpf_xdp.o      tail_nodeport_nat_ingress_ipv6       6363       6371   +8 (+0.13%)

Looking at (somewhat anonymized) Meta production programs, we see mostly
insignificant variation in number of instructions, with one program
(syar_bind6_protect6) benefitting the most at -17%.

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-fbcode.csv ~/subprog-precise-after-results-fbcode.csv -e prog,insns -f 'insns_diff!=0'
Program                   Insns (A)  Insns (B)  Insns     (DIFF)
------------------------  ---------  ---------  ----------------
on_request_context_event        597        585      -12 (-2.01%)
read_async_py_stack           43789      43657     -132 (-0.30%)
read_sync_py_stack            35041      37599    +2558 (+7.30%)
rrm_usdt                        946        940       -6 (-0.63%)
sysarmor_inet6_bind           28863      28249     -614 (-2.13%)
sysarmor_inet_bind            28845      28240     -605 (-2.10%)
syar_bind4_protect4          154145     147640    -6505 (-4.22%)
syar_bind6_protect6          165242     137088  -28154 (-17.04%)
syar_task_exit_setgid         21289      19720    -1569 (-7.37%)
syar_task_exit_setuid         21290      19721    -1569 (-7.37%)
do_uprobe                     19967      19413     -554 (-2.77%)
tw_twfw_ingress              215877     204833   -11044 (-5.12%)
tw_twfw_tc_in                215877     204833   -11044 (-5.12%)

But checking duration (wall clock) differences, that is the actual time taken
by verifier to validate programs, we see a sometimes dramatic improvements, all
the way to about 16x improvements:

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-meta.csv ~/subprog-precise-after-results-meta.csv -e prog,duration -s duration_diff^ | head -n20
Program                                   Duration (us) (A)  Duration (us) (B)  Duration (us) (DIFF)
----------------------------------------  -----------------  -----------------  --------------------
tw_twfw_ingress                                     4488374             272836    -4215538 (-93.92%)
tw_twfw_tc_in                                       4339111             268175    -4070936 (-93.82%)
tw_twfw_egress                                      3521816             270751    -3251065 (-92.31%)
tw_twfw_tc_eg                                       3472878             284294    -3188584 (-91.81%)
balancer_ingress                                     343119             291391      -51728 (-15.08%)
syar_bind6_protect6                                   78992              64782      -14210 (-17.99%)
ttls_tc_ingress                                       11739               8176       -3563 (-30.35%)
kprobe__security_inode_link                           13864              11341       -2523 (-18.20%)
read_sync_py_stack                                    21927              19442       -2485 (-11.33%)
read_async_py_stack                                   30444              28136        -2308 (-7.58%)
syar_task_exit_setuid                                 10256               8440       -1816 (-17.71%)

Signed-off-by: Andrii Nakryiko <[email protected]>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Apr 26, 2023
Add support precision backtracking in the presence of subprogram frames in
jump history.

This means supporting a few different kinds of subprogram invocation
situations, all requiring a slightly different handling in precision
backtracking handling logic:
  - static subprogram calls;
  - global subprogram calls;
  - callback-calling helpers/kfuncs.

For each of those we need to handle a few precision propagation cases:
  - what to do with precision of subprog returns (r0);
  - what to do with precision of input arguments;
  - for all of them callee-saved registers in caller function should be
    propagated ignoring subprog/callback part of jump history.

N.B. Async callback-calling helpers (currently only
bpf_timer_set_callback()) are transparent to all this because they set
a separate async callback environment and thus callback's history is not
shared with main program's history. So as far as all the changes in this
commit goes, such helper is just a regular helper.

Let's look at all these situation in more details. Let's start with
static subprogram being called, using an exxerpt of a simple main
program and its static subprog, indenting subprog's frame slightly to
make everything clear.

frame 0				frame 1			precision set
=======				=======			=============

 9: r6 = 456;
10: r1 = 123;						r6
11: call pc+10;						r1, r6
				22: r0 = r1;		r1
				23: exit		r0
12: r1 = <map_pointer>					r0, r6
13: r1 += r0;						r0, r6
14: r1 += r6;						r6;
15: exit

As can be seen above main function is passing 123 as single argument to
an identity (`return x;`) subprog. Returned value is used to adjust map
pointer offset, which forces r0 to be marked as precise. Then
instruction #14 does the same for callee-saved r6, which will have to be
backtracked all the way to instruction #9. For brevity, precision sets
for instruction #13 and #14 are combined in the diagram above.

First, for subprog calls, r0 returned from subprog (in frame 0) has to
go into subprog's frame 1, and should be cleared from frame 0. So we go
back into subprog's frame knowing we need to mark r0 precise. We then
see that insn #22 sets r0 from r1, so now we care about marking r1
precise.  When we pop up from subprog's frame back into caller at
insn #11 we keep r1, as it's an argument-passing register, so we eventually
find `10: r1 = 123;` and satify precision propagation chain for insn #13.

This example demonstrates two sets of rules:
  - r0 returned after subprog call has to be moved into subprog's r0 set;
  - *static* subprog arguments (r1-r5) are moved back to caller precision set.

Let's look at what happens with callee-saved precision propagation. Insn #14
mark r6 as precise. When we get into subprog's frame, we keep r6 in
frame 0's precision set *only*. Subprog itself has its own set of
independent r6-r10 registers and is not affected. When we eventually
made our way out of subprog frame we keep r6 in precision set until we
reach `9: r6 = 456;`, satisfying propagation. r6-r10 propagation is
perhaps the simplest aspect, it always stays in its original frame.

That's pretty much all we have to do to support precision propagation
across *static subprog* invocation.

Let's look at what happens when we have global subprog invocation.

frame 0				frame 1			precision set
=======				=======			=============

 9: r6 = 456;
10: r1 = 123;						r6
11: call pc+10; # global subprog			r6
12: r1 = <map_pointer>					r0, r6
13: r1 += r0;						r0, r6
14: r1 += r6;						r6;
15: exit

Starting from insn #13, r0 has to be precise. We backtrack all the way
to insn #11 (call pc+10) and see that subprog is global, so was already
validated in isolation. As opposed to static subprog, global subprog
always returns unknown scalar r0, so that satisfies precision
propagation and we drop r0 from precision set. We are done for insns #13.

Now for insn #14. r6 is in precision set, we backtrack to `call pc+10;`.
Here we need to recognize that this is effectively both exit and entry
to global subprog, which means we stay in caller's frame. So we carry on
with r6 still in precision set, until we satisfy it at insn #9. The only
hard part with global subprogs is just knowing when it's a global func.

Lastly, callback-calling helpers and kfuncs do simulate subprog calls,
so jump history will have subprog instructions in between caller
program's instructions, but the rules of propagating r0 and r1-r5
differ, because we don't actually directly call callback. We actually
call helper/kfunc, which at runtime will call subprog, so the only
difference between normal helper/kfunc handling is that we need to make
sure to skip callback simulatinog part of jump history.
Let's look at an example to make this clearer.

frame 0				frame 1			precision set
=======				=======			=============

 8: r6 = 456;
 9: r1 = 123;						r6
10: r2 = &callback;					r6
11: call bpf_loop;					r6
				22: r0 = r1;
				23: exit
12: r1 = <map_pointer>					r0, r6
13: r1 += r0;						r0, r6
14: r1 += r6;						r6;
15: exit

Again, insn #13 forces r0 to be precise. As soon as we get to `23: exit`
we see that this isn't actually a static subprog call (it's `call
bpf_loop;` helper call instead). So we clear r0 from precision set.

For callee-saved register, there is no difference: it stays in frame 0's
precision set, we go through insn #22 and #23, ignoring them until we
get back to caller frame 0, eventually satisfying precision backtrack
logic at insn #8 (`r6 = 456;`).

Assuming callback needed to set r0 as precise at insn #23, we'd
backtrack to insn #22, switching from r0 to r1, and then at the point
when we pop back to frame 0 at insn #11, we'll clear r1-r5 from
precision set, as we don't really do a subprog call directly, so there
is no input argument precision propagation.

That's pretty much it. With these changes, it seems like the only still
unsupported situation for precision backpropagation is the case when
program is accessing stack through registers other than r10. This is
still left as unsupported (though rare) case for now.

As for results. For selftests, few positive changes for bigger programs,
cls_redirect in dynptr variant benefitting the most:

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results.csv ~/subprog-precise-after-results.csv -f @veristat.cfg -e file,prog,insns -f 'insns_diff!=0'
File                                      Program        Insns (A)  Insns (B)  Insns     (DIFF)
----------------------------------------  -------------  ---------  ---------  ----------------
pyperf600_bpf_loop.bpf.linked1.o          on_event            2060       2002      -58 (-2.82%)
test_cls_redirect_dynptr.bpf.linked1.o    cls_redirect       15660       2914  -12746 (-81.39%)
test_cls_redirect_subprogs.bpf.linked1.o  cls_redirect       61620      59088    -2532 (-4.11%)
xdp_synproxy_kern.bpf.linked1.o           syncookie_tc      109980      86278  -23702 (-21.55%)
xdp_synproxy_kern.bpf.linked1.o           syncookie_xdp      97716      85147  -12569 (-12.86%)

Cilium progress don't really regress. They don't use subprogs and are
mostly unaffected, but some other fixes and improvements could have
changed something. This doesn't appear to be the case:

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-cilium.csv ~/subprog-precise-after-results-cilium.csv -e file,prog,insns -f 'insns_diff!=0'
File           Program                         Insns (A)  Insns (B)  Insns (DIFF)
-------------  ------------------------------  ---------  ---------  ------------
bpf_host.o     tail_nodeport_nat_ingress_ipv6       4983       5003  +20 (+0.40%)
bpf_lxc.o      tail_nodeport_nat_ingress_ipv6       4983       5003  +20 (+0.40%)
bpf_overlay.o  tail_nodeport_nat_ingress_ipv6       4983       5003  +20 (+0.40%)
bpf_xdp.o      tail_handle_nat_fwd_ipv6            12475      12504  +29 (+0.23%)
bpf_xdp.o      tail_nodeport_nat_ingress_ipv6       6363       6371   +8 (+0.13%)

Looking at (somewhat anonymized) Meta production programs, we see mostly
insignificant variation in number of instructions, with one program
(syar_bind6_protect6) benefitting the most at -17%.

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-fbcode.csv ~/subprog-precise-after-results-fbcode.csv -e prog,insns -f 'insns_diff!=0'
Program                   Insns (A)  Insns (B)  Insns     (DIFF)
------------------------  ---------  ---------  ----------------
on_request_context_event        597        585      -12 (-2.01%)
read_async_py_stack           43789      43657     -132 (-0.30%)
read_sync_py_stack            35041      37599    +2558 (+7.30%)
rrm_usdt                        946        940       -6 (-0.63%)
sysarmor_inet6_bind           28863      28249     -614 (-2.13%)
sysarmor_inet_bind            28845      28240     -605 (-2.10%)
syar_bind4_protect4          154145     147640    -6505 (-4.22%)
syar_bind6_protect6          165242     137088  -28154 (-17.04%)
syar_task_exit_setgid         21289      19720    -1569 (-7.37%)
syar_task_exit_setuid         21290      19721    -1569 (-7.37%)
do_uprobe                     19967      19413     -554 (-2.77%)
tw_twfw_ingress              215877     204833   -11044 (-5.12%)
tw_twfw_tc_in                215877     204833   -11044 (-5.12%)

But checking duration (wall clock) differences, that is the actual time taken
by verifier to validate programs, we see a sometimes dramatic improvements, all
the way to about 16x improvements:

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-meta.csv ~/subprog-precise-after-results-meta.csv -e prog,duration -s duration_diff^ | head -n20
Program                                   Duration (us) (A)  Duration (us) (B)  Duration (us) (DIFF)
----------------------------------------  -----------------  -----------------  --------------------
tw_twfw_ingress                                     4488374             272836    -4215538 (-93.92%)
tw_twfw_tc_in                                       4339111             268175    -4070936 (-93.82%)
tw_twfw_egress                                      3521816             270751    -3251065 (-92.31%)
tw_twfw_tc_eg                                       3472878             284294    -3188584 (-91.81%)
balancer_ingress                                     343119             291391      -51728 (-15.08%)
syar_bind6_protect6                                   78992              64782      -14210 (-17.99%)
ttls_tc_ingress                                       11739               8176       -3563 (-30.35%)
kprobe__security_inode_link                           13864              11341       -2523 (-18.20%)
read_sync_py_stack                                    21927              19442       -2485 (-11.33%)
read_async_py_stack                                   30444              28136        -2308 (-7.58%)
syar_task_exit_setuid                                 10256               8440       -1816 (-17.71%)

Signed-off-by: Andrii Nakryiko <[email protected]>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Apr 26, 2023
Add support precision backtracking in the presence of subprogram frames in
jump history.

This means supporting a few different kinds of subprogram invocation
situations, all requiring a slightly different handling in precision
backtracking handling logic:
  - static subprogram calls;
  - global subprogram calls;
  - callback-calling helpers/kfuncs.

For each of those we need to handle a few precision propagation cases:
  - what to do with precision of subprog returns (r0);
  - what to do with precision of input arguments;
  - for all of them callee-saved registers in caller function should be
    propagated ignoring subprog/callback part of jump history.

N.B. Async callback-calling helpers (currently only
bpf_timer_set_callback()) are transparent to all this because they set
a separate async callback environment and thus callback's history is not
shared with main program's history. So as far as all the changes in this
commit goes, such helper is just a regular helper.

Let's look at all these situation in more details. Let's start with
static subprogram being called, using an exxerpt of a simple main
program and its static subprog, indenting subprog's frame slightly to
make everything clear.

frame 0				frame 1			precision set
=======				=======			=============

 9: r6 = 456;
10: r1 = 123;						r6
11: call pc+10;						r1, r6
				22: r0 = r1;		r1
				23: exit		r0
12: r1 = <map_pointer>					r0, r6
13: r1 += r0;						r0, r6
14: r1 += r6;						r6;
15: exit

As can be seen above main function is passing 123 as single argument to
an identity (`return x;`) subprog. Returned value is used to adjust map
pointer offset, which forces r0 to be marked as precise. Then
instruction #14 does the same for callee-saved r6, which will have to be
backtracked all the way to instruction #9. For brevity, precision sets
for instruction #13 and #14 are combined in the diagram above.

First, for subprog calls, r0 returned from subprog (in frame 0) has to
go into subprog's frame 1, and should be cleared from frame 0. So we go
back into subprog's frame knowing we need to mark r0 precise. We then
see that insn #22 sets r0 from r1, so now we care about marking r1
precise.  When we pop up from subprog's frame back into caller at
insn #11 we keep r1, as it's an argument-passing register, so we eventually
find `10: r1 = 123;` and satify precision propagation chain for insn #13.

This example demonstrates two sets of rules:
  - r0 returned after subprog call has to be moved into subprog's r0 set;
  - *static* subprog arguments (r1-r5) are moved back to caller precision set.

Let's look at what happens with callee-saved precision propagation. Insn #14
mark r6 as precise. When we get into subprog's frame, we keep r6 in
frame 0's precision set *only*. Subprog itself has its own set of
independent r6-r10 registers and is not affected. When we eventually
made our way out of subprog frame we keep r6 in precision set until we
reach `9: r6 = 456;`, satisfying propagation. r6-r10 propagation is
perhaps the simplest aspect, it always stays in its original frame.

That's pretty much all we have to do to support precision propagation
across *static subprog* invocation.

Let's look at what happens when we have global subprog invocation.

frame 0				frame 1			precision set
=======				=======			=============

 9: r6 = 456;
10: r1 = 123;						r6
11: call pc+10; # global subprog			r6
12: r1 = <map_pointer>					r0, r6
13: r1 += r0;						r0, r6
14: r1 += r6;						r6;
15: exit

Starting from insn #13, r0 has to be precise. We backtrack all the way
to insn #11 (call pc+10) and see that subprog is global, so was already
validated in isolation. As opposed to static subprog, global subprog
always returns unknown scalar r0, so that satisfies precision
propagation and we drop r0 from precision set. We are done for insns #13.

Now for insn #14. r6 is in precision set, we backtrack to `call pc+10;`.
Here we need to recognize that this is effectively both exit and entry
to global subprog, which means we stay in caller's frame. So we carry on
with r6 still in precision set, until we satisfy it at insn #9. The only
hard part with global subprogs is just knowing when it's a global func.

Lastly, callback-calling helpers and kfuncs do simulate subprog calls,
so jump history will have subprog instructions in between caller
program's instructions, but the rules of propagating r0 and r1-r5
differ, because we don't actually directly call callback. We actually
call helper/kfunc, which at runtime will call subprog, so the only
difference between normal helper/kfunc handling is that we need to make
sure to skip callback simulatinog part of jump history.
Let's look at an example to make this clearer.

frame 0				frame 1			precision set
=======				=======			=============

 8: r6 = 456;
 9: r1 = 123;						r6
10: r2 = &callback;					r6
11: call bpf_loop;					r6
				22: r0 = r1;
				23: exit
12: r1 = <map_pointer>					r0, r6
13: r1 += r0;						r0, r6
14: r1 += r6;						r6;
15: exit

Again, insn #13 forces r0 to be precise. As soon as we get to `23: exit`
we see that this isn't actually a static subprog call (it's `call
bpf_loop;` helper call instead). So we clear r0 from precision set.

For callee-saved register, there is no difference: it stays in frame 0's
precision set, we go through insn #22 and #23, ignoring them until we
get back to caller frame 0, eventually satisfying precision backtrack
logic at insn #8 (`r6 = 456;`).

Assuming callback needed to set r0 as precise at insn #23, we'd
backtrack to insn #22, switching from r0 to r1, and then at the point
when we pop back to frame 0 at insn #11, we'll clear r1-r5 from
precision set, as we don't really do a subprog call directly, so there
is no input argument precision propagation.

That's pretty much it. With these changes, it seems like the only still
unsupported situation for precision backpropagation is the case when
program is accessing stack through registers other than r10. This is
still left as unsupported (though rare) case for now.

As for results. For selftests, few positive changes for bigger programs,
cls_redirect in dynptr variant benefitting the most:

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results.csv ~/subprog-precise-after-results.csv -f @veristat.cfg -e file,prog,insns -f 'insns_diff!=0'
File                                      Program        Insns (A)  Insns (B)  Insns     (DIFF)
----------------------------------------  -------------  ---------  ---------  ----------------
pyperf600_bpf_loop.bpf.linked1.o          on_event            2060       2002      -58 (-2.82%)
test_cls_redirect_dynptr.bpf.linked1.o    cls_redirect       15660       2914  -12746 (-81.39%)
test_cls_redirect_subprogs.bpf.linked1.o  cls_redirect       61620      59088    -2532 (-4.11%)
xdp_synproxy_kern.bpf.linked1.o           syncookie_tc      109980      86278  -23702 (-21.55%)
xdp_synproxy_kern.bpf.linked1.o           syncookie_xdp      97716      85147  -12569 (-12.86%)

Cilium progress don't really regress. They don't use subprogs and are
mostly unaffected, but some other fixes and improvements could have
changed something. This doesn't appear to be the case:

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-cilium.csv ~/subprog-precise-after-results-cilium.csv -e file,prog,insns -f 'insns_diff!=0'
File           Program                         Insns (A)  Insns (B)  Insns (DIFF)
-------------  ------------------------------  ---------  ---------  ------------
bpf_host.o     tail_nodeport_nat_ingress_ipv6       4983       5003  +20 (+0.40%)
bpf_lxc.o      tail_nodeport_nat_ingress_ipv6       4983       5003  +20 (+0.40%)
bpf_overlay.o  tail_nodeport_nat_ingress_ipv6       4983       5003  +20 (+0.40%)
bpf_xdp.o      tail_handle_nat_fwd_ipv6            12475      12504  +29 (+0.23%)
bpf_xdp.o      tail_nodeport_nat_ingress_ipv6       6363       6371   +8 (+0.13%)

Looking at (somewhat anonymized) Meta production programs, we see mostly
insignificant variation in number of instructions, with one program
(syar_bind6_protect6) benefitting the most at -17%.

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-fbcode.csv ~/subprog-precise-after-results-fbcode.csv -e prog,insns -f 'insns_diff!=0'
Program                   Insns (A)  Insns (B)  Insns     (DIFF)
------------------------  ---------  ---------  ----------------
on_request_context_event        597        585      -12 (-2.01%)
read_async_py_stack           43789      43657     -132 (-0.30%)
read_sync_py_stack            35041      37599    +2558 (+7.30%)
rrm_usdt                        946        940       -6 (-0.63%)
sysarmor_inet6_bind           28863      28249     -614 (-2.13%)
sysarmor_inet_bind            28845      28240     -605 (-2.10%)
syar_bind4_protect4          154145     147640    -6505 (-4.22%)
syar_bind6_protect6          165242     137088  -28154 (-17.04%)
syar_task_exit_setgid         21289      19720    -1569 (-7.37%)
syar_task_exit_setuid         21290      19721    -1569 (-7.37%)
do_uprobe                     19967      19413     -554 (-2.77%)
tw_twfw_ingress              215877     204833   -11044 (-5.12%)
tw_twfw_tc_in                215877     204833   -11044 (-5.12%)

But checking duration (wall clock) differences, that is the actual time taken
by verifier to validate programs, we see a sometimes dramatic improvements, all
the way to about 16x improvements:

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-meta.csv ~/subprog-precise-after-results-meta.csv -e prog,duration -s duration_diff^ | head -n20
Program                                   Duration (us) (A)  Duration (us) (B)  Duration (us) (DIFF)
----------------------------------------  -----------------  -----------------  --------------------
tw_twfw_ingress                                     4488374             272836    -4215538 (-93.92%)
tw_twfw_tc_in                                       4339111             268175    -4070936 (-93.82%)
tw_twfw_egress                                      3521816             270751    -3251065 (-92.31%)
tw_twfw_tc_eg                                       3472878             284294    -3188584 (-91.81%)
balancer_ingress                                     343119             291391      -51728 (-15.08%)
syar_bind6_protect6                                   78992              64782      -14210 (-17.99%)
ttls_tc_ingress                                       11739               8176       -3563 (-30.35%)
kprobe__security_inode_link                           13864              11341       -2523 (-18.20%)
read_sync_py_stack                                    21927              19442       -2485 (-11.33%)
read_async_py_stack                                   30444              28136        -2308 (-7.58%)
syar_task_exit_setuid                                 10256               8440       -1816 (-17.71%)

Signed-off-by: Andrii Nakryiko <[email protected]>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Apr 27, 2023
Add support precision backtracking in the presence of subprogram frames in
jump history.

This means supporting a few different kinds of subprogram invocation
situations, all requiring a slightly different handling in precision
backtracking handling logic:
  - static subprogram calls;
  - global subprogram calls;
  - callback-calling helpers/kfuncs.

For each of those we need to handle a few precision propagation cases:
  - what to do with precision of subprog returns (r0);
  - what to do with precision of input arguments;
  - for all of them callee-saved registers in caller function should be
    propagated ignoring subprog/callback part of jump history.

N.B. Async callback-calling helpers (currently only
bpf_timer_set_callback()) are transparent to all this because they set
a separate async callback environment and thus callback's history is not
shared with main program's history. So as far as all the changes in this
commit goes, such helper is just a regular helper.

Let's look at all these situation in more details. Let's start with
static subprogram being called, using an exxerpt of a simple main
program and its static subprog, indenting subprog's frame slightly to
make everything clear.

frame 0				frame 1			precision set
=======				=======			=============

 9: r6 = 456;
10: r1 = 123;						r6
11: call pc+10;						r1, r6
				22: r0 = r1;		r1
				23: exit		r0
12: r1 = <map_pointer>					r0, r6
13: r1 += r0;						r0, r6
14: r1 += r6;						r6;
15: exit

As can be seen above main function is passing 123 as single argument to
an identity (`return x;`) subprog. Returned value is used to adjust map
pointer offset, which forces r0 to be marked as precise. Then
instruction #14 does the same for callee-saved r6, which will have to be
backtracked all the way to instruction #9. For brevity, precision sets
for instruction #13 and #14 are combined in the diagram above.

First, for subprog calls, r0 returned from subprog (in frame 0) has to
go into subprog's frame 1, and should be cleared from frame 0. So we go
back into subprog's frame knowing we need to mark r0 precise. We then
see that insn #22 sets r0 from r1, so now we care about marking r1
precise.  When we pop up from subprog's frame back into caller at
insn #11 we keep r1, as it's an argument-passing register, so we eventually
find `10: r1 = 123;` and satify precision propagation chain for insn #13.

This example demonstrates two sets of rules:
  - r0 returned after subprog call has to be moved into subprog's r0 set;
  - *static* subprog arguments (r1-r5) are moved back to caller precision set.

Let's look at what happens with callee-saved precision propagation. Insn #14
mark r6 as precise. When we get into subprog's frame, we keep r6 in
frame 0's precision set *only*. Subprog itself has its own set of
independent r6-r10 registers and is not affected. When we eventually
made our way out of subprog frame we keep r6 in precision set until we
reach `9: r6 = 456;`, satisfying propagation. r6-r10 propagation is
perhaps the simplest aspect, it always stays in its original frame.

That's pretty much all we have to do to support precision propagation
across *static subprog* invocation.

Let's look at what happens when we have global subprog invocation.

frame 0				frame 1			precision set
=======				=======			=============

 9: r6 = 456;
10: r1 = 123;						r6
11: call pc+10; # global subprog			r6
12: r1 = <map_pointer>					r0, r6
13: r1 += r0;						r0, r6
14: r1 += r6;						r6;
15: exit

Starting from insn #13, r0 has to be precise. We backtrack all the way
to insn #11 (call pc+10) and see that subprog is global, so was already
validated in isolation. As opposed to static subprog, global subprog
always returns unknown scalar r0, so that satisfies precision
propagation and we drop r0 from precision set. We are done for insns #13.

Now for insn #14. r6 is in precision set, we backtrack to `call pc+10;`.
Here we need to recognize that this is effectively both exit and entry
to global subprog, which means we stay in caller's frame. So we carry on
with r6 still in precision set, until we satisfy it at insn #9. The only
hard part with global subprogs is just knowing when it's a global func.

Lastly, callback-calling helpers and kfuncs do simulate subprog calls,
so jump history will have subprog instructions in between caller
program's instructions, but the rules of propagating r0 and r1-r5
differ, because we don't actually directly call callback. We actually
call helper/kfunc, which at runtime will call subprog, so the only
difference between normal helper/kfunc handling is that we need to make
sure to skip callback simulatinog part of jump history.
Let's look at an example to make this clearer.

frame 0				frame 1			precision set
=======				=======			=============

 8: r6 = 456;
 9: r1 = 123;						r6
10: r2 = &callback;					r6
11: call bpf_loop;					r6
				22: r0 = r1;
				23: exit
12: r1 = <map_pointer>					r0, r6
13: r1 += r0;						r0, r6
14: r1 += r6;						r6;
15: exit

Again, insn #13 forces r0 to be precise. As soon as we get to `23: exit`
we see that this isn't actually a static subprog call (it's `call
bpf_loop;` helper call instead). So we clear r0 from precision set.

For callee-saved register, there is no difference: it stays in frame 0's
precision set, we go through insn #22 and #23, ignoring them until we
get back to caller frame 0, eventually satisfying precision backtrack
logic at insn #8 (`r6 = 456;`).

Assuming callback needed to set r0 as precise at insn #23, we'd
backtrack to insn #22, switching from r0 to r1, and then at the point
when we pop back to frame 0 at insn #11, we'll clear r1-r5 from
precision set, as we don't really do a subprog call directly, so there
is no input argument precision propagation.

That's pretty much it. With these changes, it seems like the only still
unsupported situation for precision backpropagation is the case when
program is accessing stack through registers other than r10. This is
still left as unsupported (though rare) case for now.

As for results. For selftests, few positive changes for bigger programs,
cls_redirect in dynptr variant benefitting the most:

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results.csv ~/subprog-precise-after-results.csv -f @veristat.cfg -e file,prog,insns -f 'insns_diff!=0'
File                                      Program        Insns (A)  Insns (B)  Insns     (DIFF)
----------------------------------------  -------------  ---------  ---------  ----------------
pyperf600_bpf_loop.bpf.linked1.o          on_event            2060       2002      -58 (-2.82%)
test_cls_redirect_dynptr.bpf.linked1.o    cls_redirect       15660       2914  -12746 (-81.39%)
test_cls_redirect_subprogs.bpf.linked1.o  cls_redirect       61620      59088    -2532 (-4.11%)
xdp_synproxy_kern.bpf.linked1.o           syncookie_tc      109980      86278  -23702 (-21.55%)
xdp_synproxy_kern.bpf.linked1.o           syncookie_xdp      97716      85147  -12569 (-12.86%)

Cilium progress don't really regress. They don't use subprogs and are
mostly unaffected, but some other fixes and improvements could have
changed something. This doesn't appear to be the case:

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-cilium.csv ~/subprog-precise-after-results-cilium.csv -e file,prog,insns -f 'insns_diff!=0'
File           Program                         Insns (A)  Insns (B)  Insns (DIFF)
-------------  ------------------------------  ---------  ---------  ------------
bpf_host.o     tail_nodeport_nat_ingress_ipv6       4983       5003  +20 (+0.40%)
bpf_lxc.o      tail_nodeport_nat_ingress_ipv6       4983       5003  +20 (+0.40%)
bpf_overlay.o  tail_nodeport_nat_ingress_ipv6       4983       5003  +20 (+0.40%)
bpf_xdp.o      tail_handle_nat_fwd_ipv6            12475      12504  +29 (+0.23%)
bpf_xdp.o      tail_nodeport_nat_ingress_ipv6       6363       6371   +8 (+0.13%)

Looking at (somewhat anonymized) Meta production programs, we see mostly
insignificant variation in number of instructions, with one program
(syar_bind6_protect6) benefitting the most at -17%.

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-fbcode.csv ~/subprog-precise-after-results-fbcode.csv -e prog,insns -f 'insns_diff!=0'
Program                   Insns (A)  Insns (B)  Insns     (DIFF)
------------------------  ---------  ---------  ----------------
on_request_context_event        597        585      -12 (-2.01%)
read_async_py_stack           43789      43657     -132 (-0.30%)
read_sync_py_stack            35041      37599    +2558 (+7.30%)
rrm_usdt                        946        940       -6 (-0.63%)
sysarmor_inet6_bind           28863      28249     -614 (-2.13%)
sysarmor_inet_bind            28845      28240     -605 (-2.10%)
syar_bind4_protect4          154145     147640    -6505 (-4.22%)
syar_bind6_protect6          165242     137088  -28154 (-17.04%)
syar_task_exit_setgid         21289      19720    -1569 (-7.37%)
syar_task_exit_setuid         21290      19721    -1569 (-7.37%)
do_uprobe                     19967      19413     -554 (-2.77%)
tw_twfw_ingress              215877     204833   -11044 (-5.12%)
tw_twfw_tc_in                215877     204833   -11044 (-5.12%)

But checking duration (wall clock) differences, that is the actual time taken
by verifier to validate programs, we see a sometimes dramatic improvements, all
the way to about 16x improvements:

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-meta.csv ~/subprog-precise-after-results-meta.csv -e prog,duration -s duration_diff^ | head -n20
Program                                   Duration (us) (A)  Duration (us) (B)  Duration (us) (DIFF)
----------------------------------------  -----------------  -----------------  --------------------
tw_twfw_ingress                                     4488374             272836    -4215538 (-93.92%)
tw_twfw_tc_in                                       4339111             268175    -4070936 (-93.82%)
tw_twfw_egress                                      3521816             270751    -3251065 (-92.31%)
tw_twfw_tc_eg                                       3472878             284294    -3188584 (-91.81%)
balancer_ingress                                     343119             291391      -51728 (-15.08%)
syar_bind6_protect6                                   78992              64782      -14210 (-17.99%)
ttls_tc_ingress                                       11739               8176       -3563 (-30.35%)
kprobe__security_inode_link                           13864              11341       -2523 (-18.20%)
read_sync_py_stack                                    21927              19442       -2485 (-11.33%)
read_async_py_stack                                   30444              28136        -2308 (-7.58%)
syar_task_exit_setuid                                 10256               8440       -1816 (-17.71%)

Signed-off-by: Andrii Nakryiko <[email protected]>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Apr 27, 2023
Add support precision backtracking in the presence of subprogram frames in
jump history.

This means supporting a few different kinds of subprogram invocation
situations, all requiring a slightly different handling in precision
backtracking handling logic:
  - static subprogram calls;
  - global subprogram calls;
  - callback-calling helpers/kfuncs.

For each of those we need to handle a few precision propagation cases:
  - what to do with precision of subprog returns (r0);
  - what to do with precision of input arguments;
  - for all of them callee-saved registers in caller function should be
    propagated ignoring subprog/callback part of jump history.

N.B. Async callback-calling helpers (currently only
bpf_timer_set_callback()) are transparent to all this because they set
a separate async callback environment and thus callback's history is not
shared with main program's history. So as far as all the changes in this
commit goes, such helper is just a regular helper.

Let's look at all these situation in more details. Let's start with
static subprogram being called, using an exxerpt of a simple main
program and its static subprog, indenting subprog's frame slightly to
make everything clear.

frame 0				frame 1			precision set
=======				=======			=============

 9: r6 = 456;
10: r1 = 123;						r6
11: call pc+10;						r1, r6
				22: r0 = r1;		r1
				23: exit		r0
12: r1 = <map_pointer>					r0, r6
13: r1 += r0;						r0, r6
14: r1 += r6;						r6;
15: exit

As can be seen above main function is passing 123 as single argument to
an identity (`return x;`) subprog. Returned value is used to adjust map
pointer offset, which forces r0 to be marked as precise. Then
instruction #14 does the same for callee-saved r6, which will have to be
backtracked all the way to instruction #9. For brevity, precision sets
for instruction #13 and #14 are combined in the diagram above.

First, for subprog calls, r0 returned from subprog (in frame 0) has to
go into subprog's frame 1, and should be cleared from frame 0. So we go
back into subprog's frame knowing we need to mark r0 precise. We then
see that insn #22 sets r0 from r1, so now we care about marking r1
precise.  When we pop up from subprog's frame back into caller at
insn #11 we keep r1, as it's an argument-passing register, so we eventually
find `10: r1 = 123;` and satify precision propagation chain for insn #13.

This example demonstrates two sets of rules:
  - r0 returned after subprog call has to be moved into subprog's r0 set;
  - *static* subprog arguments (r1-r5) are moved back to caller precision set.

Let's look at what happens with callee-saved precision propagation. Insn #14
mark r6 as precise. When we get into subprog's frame, we keep r6 in
frame 0's precision set *only*. Subprog itself has its own set of
independent r6-r10 registers and is not affected. When we eventually
made our way out of subprog frame we keep r6 in precision set until we
reach `9: r6 = 456;`, satisfying propagation. r6-r10 propagation is
perhaps the simplest aspect, it always stays in its original frame.

That's pretty much all we have to do to support precision propagation
across *static subprog* invocation.

Let's look at what happens when we have global subprog invocation.

frame 0				frame 1			precision set
=======				=======			=============

 9: r6 = 456;
10: r1 = 123;						r6
11: call pc+10; # global subprog			r6
12: r1 = <map_pointer>					r0, r6
13: r1 += r0;						r0, r6
14: r1 += r6;						r6;
15: exit

Starting from insn #13, r0 has to be precise. We backtrack all the way
to insn #11 (call pc+10) and see that subprog is global, so was already
validated in isolation. As opposed to static subprog, global subprog
always returns unknown scalar r0, so that satisfies precision
propagation and we drop r0 from precision set. We are done for insns #13.

Now for insn #14. r6 is in precision set, we backtrack to `call pc+10;`.
Here we need to recognize that this is effectively both exit and entry
to global subprog, which means we stay in caller's frame. So we carry on
with r6 still in precision set, until we satisfy it at insn #9. The only
hard part with global subprogs is just knowing when it's a global func.

Lastly, callback-calling helpers and kfuncs do simulate subprog calls,
so jump history will have subprog instructions in between caller
program's instructions, but the rules of propagating r0 and r1-r5
differ, because we don't actually directly call callback. We actually
call helper/kfunc, which at runtime will call subprog, so the only
difference between normal helper/kfunc handling is that we need to make
sure to skip callback simulatinog part of jump history.
Let's look at an example to make this clearer.

frame 0				frame 1			precision set
=======				=======			=============

 8: r6 = 456;
 9: r1 = 123;						r6
10: r2 = &callback;					r6
11: call bpf_loop;					r6
				22: r0 = r1;
				23: exit
12: r1 = <map_pointer>					r0, r6
13: r1 += r0;						r0, r6
14: r1 += r6;						r6;
15: exit

Again, insn #13 forces r0 to be precise. As soon as we get to `23: exit`
we see that this isn't actually a static subprog call (it's `call
bpf_loop;` helper call instead). So we clear r0 from precision set.

For callee-saved register, there is no difference: it stays in frame 0's
precision set, we go through insn #22 and #23, ignoring them until we
get back to caller frame 0, eventually satisfying precision backtrack
logic at insn #8 (`r6 = 456;`).

Assuming callback needed to set r0 as precise at insn #23, we'd
backtrack to insn #22, switching from r0 to r1, and then at the point
when we pop back to frame 0 at insn #11, we'll clear r1-r5 from
precision set, as we don't really do a subprog call directly, so there
is no input argument precision propagation.

That's pretty much it. With these changes, it seems like the only still
unsupported situation for precision backpropagation is the case when
program is accessing stack through registers other than r10. This is
still left as unsupported (though rare) case for now.

As for results. For selftests, few positive changes for bigger programs,
cls_redirect in dynptr variant benefitting the most:

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results.csv ~/subprog-precise-after-results.csv -f @veristat.cfg -e file,prog,insns -f 'insns_diff!=0'
File                                      Program        Insns (A)  Insns (B)  Insns     (DIFF)
----------------------------------------  -------------  ---------  ---------  ----------------
pyperf600_bpf_loop.bpf.linked1.o          on_event            2060       2002      -58 (-2.82%)
test_cls_redirect_dynptr.bpf.linked1.o    cls_redirect       15660       2914  -12746 (-81.39%)
test_cls_redirect_subprogs.bpf.linked1.o  cls_redirect       61620      59088    -2532 (-4.11%)
xdp_synproxy_kern.bpf.linked1.o           syncookie_tc      109980      86278  -23702 (-21.55%)
xdp_synproxy_kern.bpf.linked1.o           syncookie_xdp      97716      85147  -12569 (-12.86%)

Cilium progress don't really regress. They don't use subprogs and are
mostly unaffected, but some other fixes and improvements could have
changed something. This doesn't appear to be the case:

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-cilium.csv ~/subprog-precise-after-results-cilium.csv -e file,prog,insns -f 'insns_diff!=0'
File           Program                         Insns (A)  Insns (B)  Insns (DIFF)
-------------  ------------------------------  ---------  ---------  ------------
bpf_host.o     tail_nodeport_nat_ingress_ipv6       4983       5003  +20 (+0.40%)
bpf_lxc.o      tail_nodeport_nat_ingress_ipv6       4983       5003  +20 (+0.40%)
bpf_overlay.o  tail_nodeport_nat_ingress_ipv6       4983       5003  +20 (+0.40%)
bpf_xdp.o      tail_handle_nat_fwd_ipv6            12475      12504  +29 (+0.23%)
bpf_xdp.o      tail_nodeport_nat_ingress_ipv6       6363       6371   +8 (+0.13%)

Looking at (somewhat anonymized) Meta production programs, we see mostly
insignificant variation in number of instructions, with one program
(syar_bind6_protect6) benefitting the most at -17%.

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-fbcode.csv ~/subprog-precise-after-results-fbcode.csv -e prog,insns -f 'insns_diff!=0'
Program                   Insns (A)  Insns (B)  Insns     (DIFF)
------------------------  ---------  ---------  ----------------
on_request_context_event        597        585      -12 (-2.01%)
read_async_py_stack           43789      43657     -132 (-0.30%)
read_sync_py_stack            35041      37599    +2558 (+7.30%)
rrm_usdt                        946        940       -6 (-0.63%)
sysarmor_inet6_bind           28863      28249     -614 (-2.13%)
sysarmor_inet_bind            28845      28240     -605 (-2.10%)
syar_bind4_protect4          154145     147640    -6505 (-4.22%)
syar_bind6_protect6          165242     137088  -28154 (-17.04%)
syar_task_exit_setgid         21289      19720    -1569 (-7.37%)
syar_task_exit_setuid         21290      19721    -1569 (-7.37%)
do_uprobe                     19967      19413     -554 (-2.77%)
tw_twfw_ingress              215877     204833   -11044 (-5.12%)
tw_twfw_tc_in                215877     204833   -11044 (-5.12%)

But checking duration (wall clock) differences, that is the actual time taken
by verifier to validate programs, we see a sometimes dramatic improvements, all
the way to about 16x improvements:

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-meta.csv ~/subprog-precise-after-results-meta.csv -e prog,duration -s duration_diff^ | head -n20
Program                                   Duration (us) (A)  Duration (us) (B)  Duration (us) (DIFF)
----------------------------------------  -----------------  -----------------  --------------------
tw_twfw_ingress                                     4488374             272836    -4215538 (-93.92%)
tw_twfw_tc_in                                       4339111             268175    -4070936 (-93.82%)
tw_twfw_egress                                      3521816             270751    -3251065 (-92.31%)
tw_twfw_tc_eg                                       3472878             284294    -3188584 (-91.81%)
balancer_ingress                                     343119             291391      -51728 (-15.08%)
syar_bind6_protect6                                   78992              64782      -14210 (-17.99%)
ttls_tc_ingress                                       11739               8176       -3563 (-30.35%)
kprobe__security_inode_link                           13864              11341       -2523 (-18.20%)
read_sync_py_stack                                    21927              19442       -2485 (-11.33%)
read_async_py_stack                                   30444              28136        -2308 (-7.58%)
syar_task_exit_setuid                                 10256               8440       -1816 (-17.71%)

Signed-off-by: Andrii Nakryiko <[email protected]>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Apr 27, 2023
Add support precision backtracking in the presence of subprogram frames in
jump history.

This means supporting a few different kinds of subprogram invocation
situations, all requiring a slightly different handling in precision
backtracking handling logic:
  - static subprogram calls;
  - global subprogram calls;
  - callback-calling helpers/kfuncs.

For each of those we need to handle a few precision propagation cases:
  - what to do with precision of subprog returns (r0);
  - what to do with precision of input arguments;
  - for all of them callee-saved registers in caller function should be
    propagated ignoring subprog/callback part of jump history.

N.B. Async callback-calling helpers (currently only
bpf_timer_set_callback()) are transparent to all this because they set
a separate async callback environment and thus callback's history is not
shared with main program's history. So as far as all the changes in this
commit goes, such helper is just a regular helper.

Let's look at all these situation in more details. Let's start with
static subprogram being called, using an exxerpt of a simple main
program and its static subprog, indenting subprog's frame slightly to
make everything clear.

frame 0				frame 1			precision set
=======				=======			=============

 9: r6 = 456;
10: r1 = 123;						r6
11: call pc+10;						r1, r6
				22: r0 = r1;		r1
				23: exit		r0
12: r1 = <map_pointer>					r0, r6
13: r1 += r0;						r0, r6
14: r1 += r6;						r6;
15: exit

As can be seen above main function is passing 123 as single argument to
an identity (`return x;`) subprog. Returned value is used to adjust map
pointer offset, which forces r0 to be marked as precise. Then
instruction #14 does the same for callee-saved r6, which will have to be
backtracked all the way to instruction #9. For brevity, precision sets
for instruction #13 and #14 are combined in the diagram above.

First, for subprog calls, r0 returned from subprog (in frame 0) has to
go into subprog's frame 1, and should be cleared from frame 0. So we go
back into subprog's frame knowing we need to mark r0 precise. We then
see that insn #22 sets r0 from r1, so now we care about marking r1
precise.  When we pop up from subprog's frame back into caller at
insn #11 we keep r1, as it's an argument-passing register, so we eventually
find `10: r1 = 123;` and satify precision propagation chain for insn #13.

This example demonstrates two sets of rules:
  - r0 returned after subprog call has to be moved into subprog's r0 set;
  - *static* subprog arguments (r1-r5) are moved back to caller precision set.

Let's look at what happens with callee-saved precision propagation. Insn #14
mark r6 as precise. When we get into subprog's frame, we keep r6 in
frame 0's precision set *only*. Subprog itself has its own set of
independent r6-r10 registers and is not affected. When we eventually
made our way out of subprog frame we keep r6 in precision set until we
reach `9: r6 = 456;`, satisfying propagation. r6-r10 propagation is
perhaps the simplest aspect, it always stays in its original frame.

That's pretty much all we have to do to support precision propagation
across *static subprog* invocation.

Let's look at what happens when we have global subprog invocation.

frame 0				frame 1			precision set
=======				=======			=============

 9: r6 = 456;
10: r1 = 123;						r6
11: call pc+10; # global subprog			r6
12: r1 = <map_pointer>					r0, r6
13: r1 += r0;						r0, r6
14: r1 += r6;						r6;
15: exit

Starting from insn #13, r0 has to be precise. We backtrack all the way
to insn #11 (call pc+10) and see that subprog is global, so was already
validated in isolation. As opposed to static subprog, global subprog
always returns unknown scalar r0, so that satisfies precision
propagation and we drop r0 from precision set. We are done for insns #13.

Now for insn #14. r6 is in precision set, we backtrack to `call pc+10;`.
Here we need to recognize that this is effectively both exit and entry
to global subprog, which means we stay in caller's frame. So we carry on
with r6 still in precision set, until we satisfy it at insn #9. The only
hard part with global subprogs is just knowing when it's a global func.

Lastly, callback-calling helpers and kfuncs do simulate subprog calls,
so jump history will have subprog instructions in between caller
program's instructions, but the rules of propagating r0 and r1-r5
differ, because we don't actually directly call callback. We actually
call helper/kfunc, which at runtime will call subprog, so the only
difference between normal helper/kfunc handling is that we need to make
sure to skip callback simulatinog part of jump history.
Let's look at an example to make this clearer.

frame 0				frame 1			precision set
=======				=======			=============

 8: r6 = 456;
 9: r1 = 123;						r6
10: r2 = &callback;					r6
11: call bpf_loop;					r6
				22: r0 = r1;
				23: exit
12: r1 = <map_pointer>					r0, r6
13: r1 += r0;						r0, r6
14: r1 += r6;						r6;
15: exit

Again, insn #13 forces r0 to be precise. As soon as we get to `23: exit`
we see that this isn't actually a static subprog call (it's `call
bpf_loop;` helper call instead). So we clear r0 from precision set.

For callee-saved register, there is no difference: it stays in frame 0's
precision set, we go through insn #22 and #23, ignoring them until we
get back to caller frame 0, eventually satisfying precision backtrack
logic at insn #8 (`r6 = 456;`).

Assuming callback needed to set r0 as precise at insn #23, we'd
backtrack to insn #22, switching from r0 to r1, and then at the point
when we pop back to frame 0 at insn #11, we'll clear r1-r5 from
precision set, as we don't really do a subprog call directly, so there
is no input argument precision propagation.

That's pretty much it. With these changes, it seems like the only still
unsupported situation for precision backpropagation is the case when
program is accessing stack through registers other than r10. This is
still left as unsupported (though rare) case for now.

As for results. For selftests, few positive changes for bigger programs,
cls_redirect in dynptr variant benefitting the most:

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results.csv ~/subprog-precise-after-results.csv -f @veristat.cfg -e file,prog,insns -f 'insns_diff!=0'
File                                      Program        Insns (A)  Insns (B)  Insns     (DIFF)
----------------------------------------  -------------  ---------  ---------  ----------------
pyperf600_bpf_loop.bpf.linked1.o          on_event            2060       2002      -58 (-2.82%)
test_cls_redirect_dynptr.bpf.linked1.o    cls_redirect       15660       2914  -12746 (-81.39%)
test_cls_redirect_subprogs.bpf.linked1.o  cls_redirect       61620      59088    -2532 (-4.11%)
xdp_synproxy_kern.bpf.linked1.o           syncookie_tc      109980      86278  -23702 (-21.55%)
xdp_synproxy_kern.bpf.linked1.o           syncookie_xdp      97716      85147  -12569 (-12.86%)

Cilium progress don't really regress. They don't use subprogs and are
mostly unaffected, but some other fixes and improvements could have
changed something. This doesn't appear to be the case:

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-cilium.csv ~/subprog-precise-after-results-cilium.csv -e file,prog,insns -f 'insns_diff!=0'
File           Program                         Insns (A)  Insns (B)  Insns (DIFF)
-------------  ------------------------------  ---------  ---------  ------------
bpf_host.o     tail_nodeport_nat_ingress_ipv6       4983       5003  +20 (+0.40%)
bpf_lxc.o      tail_nodeport_nat_ingress_ipv6       4983       5003  +20 (+0.40%)
bpf_overlay.o  tail_nodeport_nat_ingress_ipv6       4983       5003  +20 (+0.40%)
bpf_xdp.o      tail_handle_nat_fwd_ipv6            12475      12504  +29 (+0.23%)
bpf_xdp.o      tail_nodeport_nat_ingress_ipv6       6363       6371   +8 (+0.13%)

Looking at (somewhat anonymized) Meta production programs, we see mostly
insignificant variation in number of instructions, with one program
(syar_bind6_protect6) benefitting the most at -17%.

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-fbcode.csv ~/subprog-precise-after-results-fbcode.csv -e prog,insns -f 'insns_diff!=0'
Program                   Insns (A)  Insns (B)  Insns     (DIFF)
------------------------  ---------  ---------  ----------------
on_request_context_event        597        585      -12 (-2.01%)
read_async_py_stack           43789      43657     -132 (-0.30%)
read_sync_py_stack            35041      37599    +2558 (+7.30%)
rrm_usdt                        946        940       -6 (-0.63%)
sysarmor_inet6_bind           28863      28249     -614 (-2.13%)
sysarmor_inet_bind            28845      28240     -605 (-2.10%)
syar_bind4_protect4          154145     147640    -6505 (-4.22%)
syar_bind6_protect6          165242     137088  -28154 (-17.04%)
syar_task_exit_setgid         21289      19720    -1569 (-7.37%)
syar_task_exit_setuid         21290      19721    -1569 (-7.37%)
do_uprobe                     19967      19413     -554 (-2.77%)
tw_twfw_ingress              215877     204833   -11044 (-5.12%)
tw_twfw_tc_in                215877     204833   -11044 (-5.12%)

But checking duration (wall clock) differences, that is the actual time taken
by verifier to validate programs, we see a sometimes dramatic improvements, all
the way to about 16x improvements:

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-meta.csv ~/subprog-precise-after-results-meta.csv -e prog,duration -s duration_diff^ | head -n20
Program                                   Duration (us) (A)  Duration (us) (B)  Duration (us) (DIFF)
----------------------------------------  -----------------  -----------------  --------------------
tw_twfw_ingress                                     4488374             272836    -4215538 (-93.92%)
tw_twfw_tc_in                                       4339111             268175    -4070936 (-93.82%)
tw_twfw_egress                                      3521816             270751    -3251065 (-92.31%)
tw_twfw_tc_eg                                       3472878             284294    -3188584 (-91.81%)
balancer_ingress                                     343119             291391      -51728 (-15.08%)
syar_bind6_protect6                                   78992              64782      -14210 (-17.99%)
ttls_tc_ingress                                       11739               8176       -3563 (-30.35%)
kprobe__security_inode_link                           13864              11341       -2523 (-18.20%)
read_sync_py_stack                                    21927              19442       -2485 (-11.33%)
read_async_py_stack                                   30444              28136        -2308 (-7.58%)
syar_task_exit_setuid                                 10256               8440       -1816 (-17.71%)

Signed-off-by: Andrii Nakryiko <[email protected]>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Apr 27, 2023
Add support precision backtracking in the presence of subprogram frames in
jump history.

This means supporting a few different kinds of subprogram invocation
situations, all requiring a slightly different handling in precision
backtracking handling logic:
  - static subprogram calls;
  - global subprogram calls;
  - callback-calling helpers/kfuncs.

For each of those we need to handle a few precision propagation cases:
  - what to do with precision of subprog returns (r0);
  - what to do with precision of input arguments;
  - for all of them callee-saved registers in caller function should be
    propagated ignoring subprog/callback part of jump history.

N.B. Async callback-calling helpers (currently only
bpf_timer_set_callback()) are transparent to all this because they set
a separate async callback environment and thus callback's history is not
shared with main program's history. So as far as all the changes in this
commit goes, such helper is just a regular helper.

Let's look at all these situation in more details. Let's start with
static subprogram being called, using an exxerpt of a simple main
program and its static subprog, indenting subprog's frame slightly to
make everything clear.

frame 0				frame 1			precision set
=======				=======			=============

 9: r6 = 456;
10: r1 = 123;						r6
11: call pc+10;						r1, r6
				22: r0 = r1;		r1
				23: exit		r0
12: r1 = <map_pointer>					r0, r6
13: r1 += r0;						r0, r6
14: r1 += r6;						r6;
15: exit

As can be seen above main function is passing 123 as single argument to
an identity (`return x;`) subprog. Returned value is used to adjust map
pointer offset, which forces r0 to be marked as precise. Then
instruction #14 does the same for callee-saved r6, which will have to be
backtracked all the way to instruction #9. For brevity, precision sets
for instruction #13 and #14 are combined in the diagram above.

First, for subprog calls, r0 returned from subprog (in frame 0) has to
go into subprog's frame 1, and should be cleared from frame 0. So we go
back into subprog's frame knowing we need to mark r0 precise. We then
see that insn #22 sets r0 from r1, so now we care about marking r1
precise.  When we pop up from subprog's frame back into caller at
insn #11 we keep r1, as it's an argument-passing register, so we eventually
find `10: r1 = 123;` and satify precision propagation chain for insn #13.

This example demonstrates two sets of rules:
  - r0 returned after subprog call has to be moved into subprog's r0 set;
  - *static* subprog arguments (r1-r5) are moved back to caller precision set.

Let's look at what happens with callee-saved precision propagation. Insn #14
mark r6 as precise. When we get into subprog's frame, we keep r6 in
frame 0's precision set *only*. Subprog itself has its own set of
independent r6-r10 registers and is not affected. When we eventually
made our way out of subprog frame we keep r6 in precision set until we
reach `9: r6 = 456;`, satisfying propagation. r6-r10 propagation is
perhaps the simplest aspect, it always stays in its original frame.

That's pretty much all we have to do to support precision propagation
across *static subprog* invocation.

Let's look at what happens when we have global subprog invocation.

frame 0				frame 1			precision set
=======				=======			=============

 9: r6 = 456;
10: r1 = 123;						r6
11: call pc+10; # global subprog			r6
12: r1 = <map_pointer>					r0, r6
13: r1 += r0;						r0, r6
14: r1 += r6;						r6;
15: exit

Starting from insn #13, r0 has to be precise. We backtrack all the way
to insn #11 (call pc+10) and see that subprog is global, so was already
validated in isolation. As opposed to static subprog, global subprog
always returns unknown scalar r0, so that satisfies precision
propagation and we drop r0 from precision set. We are done for insns #13.

Now for insn #14. r6 is in precision set, we backtrack to `call pc+10;`.
Here we need to recognize that this is effectively both exit and entry
to global subprog, which means we stay in caller's frame. So we carry on
with r6 still in precision set, until we satisfy it at insn #9. The only
hard part with global subprogs is just knowing when it's a global func.

Lastly, callback-calling helpers and kfuncs do simulate subprog calls,
so jump history will have subprog instructions in between caller
program's instructions, but the rules of propagating r0 and r1-r5
differ, because we don't actually directly call callback. We actually
call helper/kfunc, which at runtime will call subprog, so the only
difference between normal helper/kfunc handling is that we need to make
sure to skip callback simulatinog part of jump history.
Let's look at an example to make this clearer.

frame 0				frame 1			precision set
=======				=======			=============

 8: r6 = 456;
 9: r1 = 123;						r6
10: r2 = &callback;					r6
11: call bpf_loop;					r6
				22: r0 = r1;
				23: exit
12: r1 = <map_pointer>					r0, r6
13: r1 += r0;						r0, r6
14: r1 += r6;						r6;
15: exit

Again, insn #13 forces r0 to be precise. As soon as we get to `23: exit`
we see that this isn't actually a static subprog call (it's `call
bpf_loop;` helper call instead). So we clear r0 from precision set.

For callee-saved register, there is no difference: it stays in frame 0's
precision set, we go through insn #22 and #23, ignoring them until we
get back to caller frame 0, eventually satisfying precision backtrack
logic at insn #8 (`r6 = 456;`).

Assuming callback needed to set r0 as precise at insn #23, we'd
backtrack to insn #22, switching from r0 to r1, and then at the point
when we pop back to frame 0 at insn #11, we'll clear r1-r5 from
precision set, as we don't really do a subprog call directly, so there
is no input argument precision propagation.

That's pretty much it. With these changes, it seems like the only still
unsupported situation for precision backpropagation is the case when
program is accessing stack through registers other than r10. This is
still left as unsupported (though rare) case for now.

As for results. For selftests, few positive changes for bigger programs,
cls_redirect in dynptr variant benefitting the most:

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results.csv ~/subprog-precise-after-results.csv -f @veristat.cfg -e file,prog,insns -f 'insns_diff!=0'
File                                      Program        Insns (A)  Insns (B)  Insns     (DIFF)
----------------------------------------  -------------  ---------  ---------  ----------------
pyperf600_bpf_loop.bpf.linked1.o          on_event            2060       2002      -58 (-2.82%)
test_cls_redirect_dynptr.bpf.linked1.o    cls_redirect       15660       2914  -12746 (-81.39%)
test_cls_redirect_subprogs.bpf.linked1.o  cls_redirect       61620      59088    -2532 (-4.11%)
xdp_synproxy_kern.bpf.linked1.o           syncookie_tc      109980      86278  -23702 (-21.55%)
xdp_synproxy_kern.bpf.linked1.o           syncookie_xdp      97716      85147  -12569 (-12.86%)

Cilium progress don't really regress. They don't use subprogs and are
mostly unaffected, but some other fixes and improvements could have
changed something. This doesn't appear to be the case:

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-cilium.csv ~/subprog-precise-after-results-cilium.csv -e file,prog,insns -f 'insns_diff!=0'
File           Program                         Insns (A)  Insns (B)  Insns (DIFF)
-------------  ------------------------------  ---------  ---------  ------------
bpf_host.o     tail_nodeport_nat_ingress_ipv6       4983       5003  +20 (+0.40%)
bpf_lxc.o      tail_nodeport_nat_ingress_ipv6       4983       5003  +20 (+0.40%)
bpf_overlay.o  tail_nodeport_nat_ingress_ipv6       4983       5003  +20 (+0.40%)
bpf_xdp.o      tail_handle_nat_fwd_ipv6            12475      12504  +29 (+0.23%)
bpf_xdp.o      tail_nodeport_nat_ingress_ipv6       6363       6371   +8 (+0.13%)

Looking at (somewhat anonymized) Meta production programs, we see mostly
insignificant variation in number of instructions, with one program
(syar_bind6_protect6) benefitting the most at -17%.

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-fbcode.csv ~/subprog-precise-after-results-fbcode.csv -e prog,insns -f 'insns_diff!=0'
Program                   Insns (A)  Insns (B)  Insns     (DIFF)
------------------------  ---------  ---------  ----------------
on_request_context_event        597        585      -12 (-2.01%)
read_async_py_stack           43789      43657     -132 (-0.30%)
read_sync_py_stack            35041      37599    +2558 (+7.30%)
rrm_usdt                        946        940       -6 (-0.63%)
sysarmor_inet6_bind           28863      28249     -614 (-2.13%)
sysarmor_inet_bind            28845      28240     -605 (-2.10%)
syar_bind4_protect4          154145     147640    -6505 (-4.22%)
syar_bind6_protect6          165242     137088  -28154 (-17.04%)
syar_task_exit_setgid         21289      19720    -1569 (-7.37%)
syar_task_exit_setuid         21290      19721    -1569 (-7.37%)
do_uprobe                     19967      19413     -554 (-2.77%)
tw_twfw_ingress              215877     204833   -11044 (-5.12%)
tw_twfw_tc_in                215877     204833   -11044 (-5.12%)

But checking duration (wall clock) differences, that is the actual time taken
by verifier to validate programs, we see a sometimes dramatic improvements, all
the way to about 16x improvements:

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-meta.csv ~/subprog-precise-after-results-meta.csv -e prog,duration -s duration_diff^ | head -n20
Program                                   Duration (us) (A)  Duration (us) (B)  Duration (us) (DIFF)
----------------------------------------  -----------------  -----------------  --------------------
tw_twfw_ingress                                     4488374             272836    -4215538 (-93.92%)
tw_twfw_tc_in                                       4339111             268175    -4070936 (-93.82%)
tw_twfw_egress                                      3521816             270751    -3251065 (-92.31%)
tw_twfw_tc_eg                                       3472878             284294    -3188584 (-91.81%)
balancer_ingress                                     343119             291391      -51728 (-15.08%)
syar_bind6_protect6                                   78992              64782      -14210 (-17.99%)
ttls_tc_ingress                                       11739               8176       -3563 (-30.35%)
kprobe__security_inode_link                           13864              11341       -2523 (-18.20%)
read_sync_py_stack                                    21927              19442       -2485 (-11.33%)
read_async_py_stack                                   30444              28136        -2308 (-7.58%)
syar_task_exit_setuid                                 10256               8440       -1816 (-17.71%)

Signed-off-by: Andrii Nakryiko <[email protected]>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Apr 27, 2023
Add support precision backtracking in the presence of subprogram frames in
jump history.

This means supporting a few different kinds of subprogram invocation
situations, all requiring a slightly different handling in precision
backtracking handling logic:
  - static subprogram calls;
  - global subprogram calls;
  - callback-calling helpers/kfuncs.

For each of those we need to handle a few precision propagation cases:
  - what to do with precision of subprog returns (r0);
  - what to do with precision of input arguments;
  - for all of them callee-saved registers in caller function should be
    propagated ignoring subprog/callback part of jump history.

N.B. Async callback-calling helpers (currently only
bpf_timer_set_callback()) are transparent to all this because they set
a separate async callback environment and thus callback's history is not
shared with main program's history. So as far as all the changes in this
commit goes, such helper is just a regular helper.

Let's look at all these situation in more details. Let's start with
static subprogram being called, using an exxerpt of a simple main
program and its static subprog, indenting subprog's frame slightly to
make everything clear.

frame 0				frame 1			precision set
=======				=======			=============

 9: r6 = 456;
10: r1 = 123;						r6
11: call pc+10;						r1, r6
				22: r0 = r1;		r1
				23: exit		r0
12: r1 = <map_pointer>					r0, r6
13: r1 += r0;						r0, r6
14: r1 += r6;						r6;
15: exit

As can be seen above main function is passing 123 as single argument to
an identity (`return x;`) subprog. Returned value is used to adjust map
pointer offset, which forces r0 to be marked as precise. Then
instruction #14 does the same for callee-saved r6, which will have to be
backtracked all the way to instruction #9. For brevity, precision sets
for instruction #13 and #14 are combined in the diagram above.

First, for subprog calls, r0 returned from subprog (in frame 0) has to
go into subprog's frame 1, and should be cleared from frame 0. So we go
back into subprog's frame knowing we need to mark r0 precise. We then
see that insn #22 sets r0 from r1, so now we care about marking r1
precise.  When we pop up from subprog's frame back into caller at
insn #11 we keep r1, as it's an argument-passing register, so we eventually
find `10: r1 = 123;` and satify precision propagation chain for insn #13.

This example demonstrates two sets of rules:
  - r0 returned after subprog call has to be moved into subprog's r0 set;
  - *static* subprog arguments (r1-r5) are moved back to caller precision set.

Let's look at what happens with callee-saved precision propagation. Insn #14
mark r6 as precise. When we get into subprog's frame, we keep r6 in
frame 0's precision set *only*. Subprog itself has its own set of
independent r6-r10 registers and is not affected. When we eventually
made our way out of subprog frame we keep r6 in precision set until we
reach `9: r6 = 456;`, satisfying propagation. r6-r10 propagation is
perhaps the simplest aspect, it always stays in its original frame.

That's pretty much all we have to do to support precision propagation
across *static subprog* invocation.

Let's look at what happens when we have global subprog invocation.

frame 0				frame 1			precision set
=======				=======			=============

 9: r6 = 456;
10: r1 = 123;						r6
11: call pc+10; # global subprog			r6
12: r1 = <map_pointer>					r0, r6
13: r1 += r0;						r0, r6
14: r1 += r6;						r6;
15: exit

Starting from insn #13, r0 has to be precise. We backtrack all the way
to insn #11 (call pc+10) and see that subprog is global, so was already
validated in isolation. As opposed to static subprog, global subprog
always returns unknown scalar r0, so that satisfies precision
propagation and we drop r0 from precision set. We are done for insns #13.

Now for insn #14. r6 is in precision set, we backtrack to `call pc+10;`.
Here we need to recognize that this is effectively both exit and entry
to global subprog, which means we stay in caller's frame. So we carry on
with r6 still in precision set, until we satisfy it at insn #9. The only
hard part with global subprogs is just knowing when it's a global func.

Lastly, callback-calling helpers and kfuncs do simulate subprog calls,
so jump history will have subprog instructions in between caller
program's instructions, but the rules of propagating r0 and r1-r5
differ, because we don't actually directly call callback. We actually
call helper/kfunc, which at runtime will call subprog, so the only
difference between normal helper/kfunc handling is that we need to make
sure to skip callback simulatinog part of jump history.
Let's look at an example to make this clearer.

frame 0				frame 1			precision set
=======				=======			=============

 8: r6 = 456;
 9: r1 = 123;						r6
10: r2 = &callback;					r6
11: call bpf_loop;					r6
				22: r0 = r1;
				23: exit
12: r1 = <map_pointer>					r0, r6
13: r1 += r0;						r0, r6
14: r1 += r6;						r6;
15: exit

Again, insn #13 forces r0 to be precise. As soon as we get to `23: exit`
we see that this isn't actually a static subprog call (it's `call
bpf_loop;` helper call instead). So we clear r0 from precision set.

For callee-saved register, there is no difference: it stays in frame 0's
precision set, we go through insn #22 and #23, ignoring them until we
get back to caller frame 0, eventually satisfying precision backtrack
logic at insn #8 (`r6 = 456;`).

Assuming callback needed to set r0 as precise at insn #23, we'd
backtrack to insn #22, switching from r0 to r1, and then at the point
when we pop back to frame 0 at insn #11, we'll clear r1-r5 from
precision set, as we don't really do a subprog call directly, so there
is no input argument precision propagation.

That's pretty much it. With these changes, it seems like the only still
unsupported situation for precision backpropagation is the case when
program is accessing stack through registers other than r10. This is
still left as unsupported (though rare) case for now.

As for results. For selftests, few positive changes for bigger programs,
cls_redirect in dynptr variant benefitting the most:

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results.csv ~/subprog-precise-after-results.csv -f @veristat.cfg -e file,prog,insns -f 'insns_diff!=0'
File                                      Program        Insns (A)  Insns (B)  Insns     (DIFF)
----------------------------------------  -------------  ---------  ---------  ----------------
pyperf600_bpf_loop.bpf.linked1.o          on_event            2060       2002      -58 (-2.82%)
test_cls_redirect_dynptr.bpf.linked1.o    cls_redirect       15660       2914  -12746 (-81.39%)
test_cls_redirect_subprogs.bpf.linked1.o  cls_redirect       61620      59088    -2532 (-4.11%)
xdp_synproxy_kern.bpf.linked1.o           syncookie_tc      109980      86278  -23702 (-21.55%)
xdp_synproxy_kern.bpf.linked1.o           syncookie_xdp      97716      85147  -12569 (-12.86%)

Cilium progress don't really regress. They don't use subprogs and are
mostly unaffected, but some other fixes and improvements could have
changed something. This doesn't appear to be the case:

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-cilium.csv ~/subprog-precise-after-results-cilium.csv -e file,prog,insns -f 'insns_diff!=0'
File           Program                         Insns (A)  Insns (B)  Insns (DIFF)
-------------  ------------------------------  ---------  ---------  ------------
bpf_host.o     tail_nodeport_nat_ingress_ipv6       4983       5003  +20 (+0.40%)
bpf_lxc.o      tail_nodeport_nat_ingress_ipv6       4983       5003  +20 (+0.40%)
bpf_overlay.o  tail_nodeport_nat_ingress_ipv6       4983       5003  +20 (+0.40%)
bpf_xdp.o      tail_handle_nat_fwd_ipv6            12475      12504  +29 (+0.23%)
bpf_xdp.o      tail_nodeport_nat_ingress_ipv6       6363       6371   +8 (+0.13%)

Looking at (somewhat anonymized) Meta production programs, we see mostly
insignificant variation in number of instructions, with one program
(syar_bind6_protect6) benefitting the most at -17%.

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-fbcode.csv ~/subprog-precise-after-results-fbcode.csv -e prog,insns -f 'insns_diff!=0'
Program                   Insns (A)  Insns (B)  Insns     (DIFF)
------------------------  ---------  ---------  ----------------
on_request_context_event        597        585      -12 (-2.01%)
read_async_py_stack           43789      43657     -132 (-0.30%)
read_sync_py_stack            35041      37599    +2558 (+7.30%)
rrm_usdt                        946        940       -6 (-0.63%)
sysarmor_inet6_bind           28863      28249     -614 (-2.13%)
sysarmor_inet_bind            28845      28240     -605 (-2.10%)
syar_bind4_protect4          154145     147640    -6505 (-4.22%)
syar_bind6_protect6          165242     137088  -28154 (-17.04%)
syar_task_exit_setgid         21289      19720    -1569 (-7.37%)
syar_task_exit_setuid         21290      19721    -1569 (-7.37%)
do_uprobe                     19967      19413     -554 (-2.77%)
tw_twfw_ingress              215877     204833   -11044 (-5.12%)
tw_twfw_tc_in                215877     204833   -11044 (-5.12%)

But checking duration (wall clock) differences, that is the actual time taken
by verifier to validate programs, we see a sometimes dramatic improvements, all
the way to about 16x improvements:

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-meta.csv ~/subprog-precise-after-results-meta.csv -e prog,duration -s duration_diff^ | head -n20
Program                                   Duration (us) (A)  Duration (us) (B)  Duration (us) (DIFF)
----------------------------------------  -----------------  -----------------  --------------------
tw_twfw_ingress                                     4488374             272836    -4215538 (-93.92%)
tw_twfw_tc_in                                       4339111             268175    -4070936 (-93.82%)
tw_twfw_egress                                      3521816             270751    -3251065 (-92.31%)
tw_twfw_tc_eg                                       3472878             284294    -3188584 (-91.81%)
balancer_ingress                                     343119             291391      -51728 (-15.08%)
syar_bind6_protect6                                   78992              64782      -14210 (-17.99%)
ttls_tc_ingress                                       11739               8176       -3563 (-30.35%)
kprobe__security_inode_link                           13864              11341       -2523 (-18.20%)
read_sync_py_stack                                    21927              19442       -2485 (-11.33%)
read_async_py_stack                                   30444              28136        -2308 (-7.58%)
syar_task_exit_setuid                                 10256               8440       -1816 (-17.71%)

Signed-off-by: Andrii Nakryiko <[email protected]>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Apr 27, 2023
Add support precision backtracking in the presence of subprogram frames in
jump history.

This means supporting a few different kinds of subprogram invocation
situations, all requiring a slightly different handling in precision
backtracking handling logic:
  - static subprogram calls;
  - global subprogram calls;
  - callback-calling helpers/kfuncs.

For each of those we need to handle a few precision propagation cases:
  - what to do with precision of subprog returns (r0);
  - what to do with precision of input arguments;
  - for all of them callee-saved registers in caller function should be
    propagated ignoring subprog/callback part of jump history.

N.B. Async callback-calling helpers (currently only
bpf_timer_set_callback()) are transparent to all this because they set
a separate async callback environment and thus callback's history is not
shared with main program's history. So as far as all the changes in this
commit goes, such helper is just a regular helper.

Let's look at all these situation in more details. Let's start with
static subprogram being called, using an exxerpt of a simple main
program and its static subprog, indenting subprog's frame slightly to
make everything clear.

frame 0				frame 1			precision set
=======				=======			=============

 9: r6 = 456;
10: r1 = 123;						r6
11: call pc+10;						r1, r6
				22: r0 = r1;		r1
				23: exit		r0
12: r1 = <map_pointer>					r0, r6
13: r1 += r0;						r0, r6
14: r1 += r6;						r6;
15: exit

As can be seen above main function is passing 123 as single argument to
an identity (`return x;`) subprog. Returned value is used to adjust map
pointer offset, which forces r0 to be marked as precise. Then
instruction #14 does the same for callee-saved r6, which will have to be
backtracked all the way to instruction #9. For brevity, precision sets
for instruction #13 and #14 are combined in the diagram above.

First, for subprog calls, r0 returned from subprog (in frame 0) has to
go into subprog's frame 1, and should be cleared from frame 0. So we go
back into subprog's frame knowing we need to mark r0 precise. We then
see that insn #22 sets r0 from r1, so now we care about marking r1
precise.  When we pop up from subprog's frame back into caller at
insn #11 we keep r1, as it's an argument-passing register, so we eventually
find `10: r1 = 123;` and satify precision propagation chain for insn #13.

This example demonstrates two sets of rules:
  - r0 returned after subprog call has to be moved into subprog's r0 set;
  - *static* subprog arguments (r1-r5) are moved back to caller precision set.

Let's look at what happens with callee-saved precision propagation. Insn #14
mark r6 as precise. When we get into subprog's frame, we keep r6 in
frame 0's precision set *only*. Subprog itself has its own set of
independent r6-r10 registers and is not affected. When we eventually
made our way out of subprog frame we keep r6 in precision set until we
reach `9: r6 = 456;`, satisfying propagation. r6-r10 propagation is
perhaps the simplest aspect, it always stays in its original frame.

That's pretty much all we have to do to support precision propagation
across *static subprog* invocation.

Let's look at what happens when we have global subprog invocation.

frame 0				frame 1			precision set
=======				=======			=============

 9: r6 = 456;
10: r1 = 123;						r6
11: call pc+10; # global subprog			r6
12: r1 = <map_pointer>					r0, r6
13: r1 += r0;						r0, r6
14: r1 += r6;						r6;
15: exit

Starting from insn #13, r0 has to be precise. We backtrack all the way
to insn #11 (call pc+10) and see that subprog is global, so was already
validated in isolation. As opposed to static subprog, global subprog
always returns unknown scalar r0, so that satisfies precision
propagation and we drop r0 from precision set. We are done for insns #13.

Now for insn #14. r6 is in precision set, we backtrack to `call pc+10;`.
Here we need to recognize that this is effectively both exit and entry
to global subprog, which means we stay in caller's frame. So we carry on
with r6 still in precision set, until we satisfy it at insn #9. The only
hard part with global subprogs is just knowing when it's a global func.

Lastly, callback-calling helpers and kfuncs do simulate subprog calls,
so jump history will have subprog instructions in between caller
program's instructions, but the rules of propagating r0 and r1-r5
differ, because we don't actually directly call callback. We actually
call helper/kfunc, which at runtime will call subprog, so the only
difference between normal helper/kfunc handling is that we need to make
sure to skip callback simulatinog part of jump history.
Let's look at an example to make this clearer.

frame 0				frame 1			precision set
=======				=======			=============

 8: r6 = 456;
 9: r1 = 123;						r6
10: r2 = &callback;					r6
11: call bpf_loop;					r6
				22: r0 = r1;
				23: exit
12: r1 = <map_pointer>					r0, r6
13: r1 += r0;						r0, r6
14: r1 += r6;						r6;
15: exit

Again, insn #13 forces r0 to be precise. As soon as we get to `23: exit`
we see that this isn't actually a static subprog call (it's `call
bpf_loop;` helper call instead). So we clear r0 from precision set.

For callee-saved register, there is no difference: it stays in frame 0's
precision set, we go through insn #22 and #23, ignoring them until we
get back to caller frame 0, eventually satisfying precision backtrack
logic at insn #8 (`r6 = 456;`).

Assuming callback needed to set r0 as precise at insn #23, we'd
backtrack to insn #22, switching from r0 to r1, and then at the point
when we pop back to frame 0 at insn #11, we'll clear r1-r5 from
precision set, as we don't really do a subprog call directly, so there
is no input argument precision propagation.

That's pretty much it. With these changes, it seems like the only still
unsupported situation for precision backpropagation is the case when
program is accessing stack through registers other than r10. This is
still left as unsupported (though rare) case for now.

As for results. For selftests, few positive changes for bigger programs,
cls_redirect in dynptr variant benefitting the most:

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results.csv ~/subprog-precise-after-results.csv -f @veristat.cfg -e file,prog,insns -f 'insns_diff!=0'
File                                      Program        Insns (A)  Insns (B)  Insns     (DIFF)
----------------------------------------  -------------  ---------  ---------  ----------------
pyperf600_bpf_loop.bpf.linked1.o          on_event            2060       2002      -58 (-2.82%)
test_cls_redirect_dynptr.bpf.linked1.o    cls_redirect       15660       2914  -12746 (-81.39%)
test_cls_redirect_subprogs.bpf.linked1.o  cls_redirect       61620      59088    -2532 (-4.11%)
xdp_synproxy_kern.bpf.linked1.o           syncookie_tc      109980      86278  -23702 (-21.55%)
xdp_synproxy_kern.bpf.linked1.o           syncookie_xdp      97716      85147  -12569 (-12.86%)

Cilium progress don't really regress. They don't use subprogs and are
mostly unaffected, but some other fixes and improvements could have
changed something. This doesn't appear to be the case:

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-cilium.csv ~/subprog-precise-after-results-cilium.csv -e file,prog,insns -f 'insns_diff!=0'
File           Program                         Insns (A)  Insns (B)  Insns (DIFF)
-------------  ------------------------------  ---------  ---------  ------------
bpf_host.o     tail_nodeport_nat_ingress_ipv6       4983       5003  +20 (+0.40%)
bpf_lxc.o      tail_nodeport_nat_ingress_ipv6       4983       5003  +20 (+0.40%)
bpf_overlay.o  tail_nodeport_nat_ingress_ipv6       4983       5003  +20 (+0.40%)
bpf_xdp.o      tail_handle_nat_fwd_ipv6            12475      12504  +29 (+0.23%)
bpf_xdp.o      tail_nodeport_nat_ingress_ipv6       6363       6371   +8 (+0.13%)

Looking at (somewhat anonymized) Meta production programs, we see mostly
insignificant variation in number of instructions, with one program
(syar_bind6_protect6) benefitting the most at -17%.

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-fbcode.csv ~/subprog-precise-after-results-fbcode.csv -e prog,insns -f 'insns_diff!=0'
Program                   Insns (A)  Insns (B)  Insns     (DIFF)
------------------------  ---------  ---------  ----------------
on_request_context_event        597        585      -12 (-2.01%)
read_async_py_stack           43789      43657     -132 (-0.30%)
read_sync_py_stack            35041      37599    +2558 (+7.30%)
rrm_usdt                        946        940       -6 (-0.63%)
sysarmor_inet6_bind           28863      28249     -614 (-2.13%)
sysarmor_inet_bind            28845      28240     -605 (-2.10%)
syar_bind4_protect4          154145     147640    -6505 (-4.22%)
syar_bind6_protect6          165242     137088  -28154 (-17.04%)
syar_task_exit_setgid         21289      19720    -1569 (-7.37%)
syar_task_exit_setuid         21290      19721    -1569 (-7.37%)
do_uprobe                     19967      19413     -554 (-2.77%)
tw_twfw_ingress              215877     204833   -11044 (-5.12%)
tw_twfw_tc_in                215877     204833   -11044 (-5.12%)

But checking duration (wall clock) differences, that is the actual time taken
by verifier to validate programs, we see a sometimes dramatic improvements, all
the way to about 16x improvements:

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-meta.csv ~/subprog-precise-after-results-meta.csv -e prog,duration -s duration_diff^ | head -n20
Program                                   Duration (us) (A)  Duration (us) (B)  Duration (us) (DIFF)
----------------------------------------  -----------------  -----------------  --------------------
tw_twfw_ingress                                     4488374             272836    -4215538 (-93.92%)
tw_twfw_tc_in                                       4339111             268175    -4070936 (-93.82%)
tw_twfw_egress                                      3521816             270751    -3251065 (-92.31%)
tw_twfw_tc_eg                                       3472878             284294    -3188584 (-91.81%)
balancer_ingress                                     343119             291391      -51728 (-15.08%)
syar_bind6_protect6                                   78992              64782      -14210 (-17.99%)
ttls_tc_ingress                                       11739               8176       -3563 (-30.35%)
kprobe__security_inode_link                           13864              11341       -2523 (-18.20%)
read_sync_py_stack                                    21927              19442       -2485 (-11.33%)
read_async_py_stack                                   30444              28136        -2308 (-7.58%)
syar_task_exit_setuid                                 10256               8440       -1816 (-17.71%)

Signed-off-by: Andrii Nakryiko <[email protected]>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Apr 27, 2023
Add support precision backtracking in the presence of subprogram frames in
jump history.

This means supporting a few different kinds of subprogram invocation
situations, all requiring a slightly different handling in precision
backtracking handling logic:
  - static subprogram calls;
  - global subprogram calls;
  - callback-calling helpers/kfuncs.

For each of those we need to handle a few precision propagation cases:
  - what to do with precision of subprog returns (r0);
  - what to do with precision of input arguments;
  - for all of them callee-saved registers in caller function should be
    propagated ignoring subprog/callback part of jump history.

N.B. Async callback-calling helpers (currently only
bpf_timer_set_callback()) are transparent to all this because they set
a separate async callback environment and thus callback's history is not
shared with main program's history. So as far as all the changes in this
commit goes, such helper is just a regular helper.

Let's look at all these situation in more details. Let's start with
static subprogram being called, using an exxerpt of a simple main
program and its static subprog, indenting subprog's frame slightly to
make everything clear.

frame 0				frame 1			precision set
=======				=======			=============

 9: r6 = 456;
10: r1 = 123;						r6
11: call pc+10;						r1, r6
				22: r0 = r1;		r1
				23: exit		r0
12: r1 = <map_pointer>					r0, r6
13: r1 += r0;						r0, r6
14: r1 += r6;						r6;
15: exit

As can be seen above main function is passing 123 as single argument to
an identity (`return x;`) subprog. Returned value is used to adjust map
pointer offset, which forces r0 to be marked as precise. Then
instruction #14 does the same for callee-saved r6, which will have to be
backtracked all the way to instruction #9. For brevity, precision sets
for instruction #13 and #14 are combined in the diagram above.

First, for subprog calls, r0 returned from subprog (in frame 0) has to
go into subprog's frame 1, and should be cleared from frame 0. So we go
back into subprog's frame knowing we need to mark r0 precise. We then
see that insn #22 sets r0 from r1, so now we care about marking r1
precise.  When we pop up from subprog's frame back into caller at
insn #11 we keep r1, as it's an argument-passing register, so we eventually
find `10: r1 = 123;` and satify precision propagation chain for insn #13.

This example demonstrates two sets of rules:
  - r0 returned after subprog call has to be moved into subprog's r0 set;
  - *static* subprog arguments (r1-r5) are moved back to caller precision set.

Let's look at what happens with callee-saved precision propagation. Insn #14
mark r6 as precise. When we get into subprog's frame, we keep r6 in
frame 0's precision set *only*. Subprog itself has its own set of
independent r6-r10 registers and is not affected. When we eventually
made our way out of subprog frame we keep r6 in precision set until we
reach `9: r6 = 456;`, satisfying propagation. r6-r10 propagation is
perhaps the simplest aspect, it always stays in its original frame.

That's pretty much all we have to do to support precision propagation
across *static subprog* invocation.

Let's look at what happens when we have global subprog invocation.

frame 0				frame 1			precision set
=======				=======			=============

 9: r6 = 456;
10: r1 = 123;						r6
11: call pc+10; # global subprog			r6
12: r1 = <map_pointer>					r0, r6
13: r1 += r0;						r0, r6
14: r1 += r6;						r6;
15: exit

Starting from insn #13, r0 has to be precise. We backtrack all the way
to insn #11 (call pc+10) and see that subprog is global, so was already
validated in isolation. As opposed to static subprog, global subprog
always returns unknown scalar r0, so that satisfies precision
propagation and we drop r0 from precision set. We are done for insns #13.

Now for insn #14. r6 is in precision set, we backtrack to `call pc+10;`.
Here we need to recognize that this is effectively both exit and entry
to global subprog, which means we stay in caller's frame. So we carry on
with r6 still in precision set, until we satisfy it at insn #9. The only
hard part with global subprogs is just knowing when it's a global func.

Lastly, callback-calling helpers and kfuncs do simulate subprog calls,
so jump history will have subprog instructions in between caller
program's instructions, but the rules of propagating r0 and r1-r5
differ, because we don't actually directly call callback. We actually
call helper/kfunc, which at runtime will call subprog, so the only
difference between normal helper/kfunc handling is that we need to make
sure to skip callback simulatinog part of jump history.
Let's look at an example to make this clearer.

frame 0				frame 1			precision set
=======				=======			=============

 8: r6 = 456;
 9: r1 = 123;						r6
10: r2 = &callback;					r6
11: call bpf_loop;					r6
				22: r0 = r1;
				23: exit
12: r1 = <map_pointer>					r0, r6
13: r1 += r0;						r0, r6
14: r1 += r6;						r6;
15: exit

Again, insn #13 forces r0 to be precise. As soon as we get to `23: exit`
we see that this isn't actually a static subprog call (it's `call
bpf_loop;` helper call instead). So we clear r0 from precision set.

For callee-saved register, there is no difference: it stays in frame 0's
precision set, we go through insn #22 and #23, ignoring them until we
get back to caller frame 0, eventually satisfying precision backtrack
logic at insn #8 (`r6 = 456;`).

Assuming callback needed to set r0 as precise at insn #23, we'd
backtrack to insn #22, switching from r0 to r1, and then at the point
when we pop back to frame 0 at insn #11, we'll clear r1-r5 from
precision set, as we don't really do a subprog call directly, so there
is no input argument precision propagation.

That's pretty much it. With these changes, it seems like the only still
unsupported situation for precision backpropagation is the case when
program is accessing stack through registers other than r10. This is
still left as unsupported (though rare) case for now.

As for results. For selftests, few positive changes for bigger programs,
cls_redirect in dynptr variant benefitting the most:

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results.csv ~/subprog-precise-after-results.csv -f @veristat.cfg -e file,prog,insns -f 'insns_diff!=0'
File                                      Program        Insns (A)  Insns (B)  Insns     (DIFF)
----------------------------------------  -------------  ---------  ---------  ----------------
pyperf600_bpf_loop.bpf.linked1.o          on_event            2060       2002      -58 (-2.82%)
test_cls_redirect_dynptr.bpf.linked1.o    cls_redirect       15660       2914  -12746 (-81.39%)
test_cls_redirect_subprogs.bpf.linked1.o  cls_redirect       61620      59088    -2532 (-4.11%)
xdp_synproxy_kern.bpf.linked1.o           syncookie_tc      109980      86278  -23702 (-21.55%)
xdp_synproxy_kern.bpf.linked1.o           syncookie_xdp      97716      85147  -12569 (-12.86%)

Cilium progress don't really regress. They don't use subprogs and are
mostly unaffected, but some other fixes and improvements could have
changed something. This doesn't appear to be the case:

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-cilium.csv ~/subprog-precise-after-results-cilium.csv -e file,prog,insns -f 'insns_diff!=0'
File           Program                         Insns (A)  Insns (B)  Insns (DIFF)
-------------  ------------------------------  ---------  ---------  ------------
bpf_host.o     tail_nodeport_nat_ingress_ipv6       4983       5003  +20 (+0.40%)
bpf_lxc.o      tail_nodeport_nat_ingress_ipv6       4983       5003  +20 (+0.40%)
bpf_overlay.o  tail_nodeport_nat_ingress_ipv6       4983       5003  +20 (+0.40%)
bpf_xdp.o      tail_handle_nat_fwd_ipv6            12475      12504  +29 (+0.23%)
bpf_xdp.o      tail_nodeport_nat_ingress_ipv6       6363       6371   +8 (+0.13%)

Looking at (somewhat anonymized) Meta production programs, we see mostly
insignificant variation in number of instructions, with one program
(syar_bind6_protect6) benefitting the most at -17%.

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-fbcode.csv ~/subprog-precise-after-results-fbcode.csv -e prog,insns -f 'insns_diff!=0'
Program                   Insns (A)  Insns (B)  Insns     (DIFF)
------------------------  ---------  ---------  ----------------
on_request_context_event        597        585      -12 (-2.01%)
read_async_py_stack           43789      43657     -132 (-0.30%)
read_sync_py_stack            35041      37599    +2558 (+7.30%)
rrm_usdt                        946        940       -6 (-0.63%)
sysarmor_inet6_bind           28863      28249     -614 (-2.13%)
sysarmor_inet_bind            28845      28240     -605 (-2.10%)
syar_bind4_protect4          154145     147640    -6505 (-4.22%)
syar_bind6_protect6          165242     137088  -28154 (-17.04%)
syar_task_exit_setgid         21289      19720    -1569 (-7.37%)
syar_task_exit_setuid         21290      19721    -1569 (-7.37%)
do_uprobe                     19967      19413     -554 (-2.77%)
tw_twfw_ingress              215877     204833   -11044 (-5.12%)
tw_twfw_tc_in                215877     204833   -11044 (-5.12%)

But checking duration (wall clock) differences, that is the actual time taken
by verifier to validate programs, we see a sometimes dramatic improvements, all
the way to about 16x improvements:

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-meta.csv ~/subprog-precise-after-results-meta.csv -e prog,duration -s duration_diff^ | head -n20
Program                                   Duration (us) (A)  Duration (us) (B)  Duration (us) (DIFF)
----------------------------------------  -----------------  -----------------  --------------------
tw_twfw_ingress                                     4488374             272836    -4215538 (-93.92%)
tw_twfw_tc_in                                       4339111             268175    -4070936 (-93.82%)
tw_twfw_egress                                      3521816             270751    -3251065 (-92.31%)
tw_twfw_tc_eg                                       3472878             284294    -3188584 (-91.81%)
balancer_ingress                                     343119             291391      -51728 (-15.08%)
syar_bind6_protect6                                   78992              64782      -14210 (-17.99%)
ttls_tc_ingress                                       11739               8176       -3563 (-30.35%)
kprobe__security_inode_link                           13864              11341       -2523 (-18.20%)
read_sync_py_stack                                    21927              19442       -2485 (-11.33%)
read_async_py_stack                                   30444              28136        -2308 (-7.58%)
syar_task_exit_setuid                                 10256               8440       -1816 (-17.71%)

Signed-off-by: Andrii Nakryiko <[email protected]>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Apr 27, 2023
Add support precision backtracking in the presence of subprogram frames in
jump history.

This means supporting a few different kinds of subprogram invocation
situations, all requiring a slightly different handling in precision
backtracking handling logic:
  - static subprogram calls;
  - global subprogram calls;
  - callback-calling helpers/kfuncs.

For each of those we need to handle a few precision propagation cases:
  - what to do with precision of subprog returns (r0);
  - what to do with precision of input arguments;
  - for all of them callee-saved registers in caller function should be
    propagated ignoring subprog/callback part of jump history.

N.B. Async callback-calling helpers (currently only
bpf_timer_set_callback()) are transparent to all this because they set
a separate async callback environment and thus callback's history is not
shared with main program's history. So as far as all the changes in this
commit goes, such helper is just a regular helper.

Let's look at all these situation in more details. Let's start with
static subprogram being called, using an exxerpt of a simple main
program and its static subprog, indenting subprog's frame slightly to
make everything clear.

frame 0				frame 1			precision set
=======				=======			=============

 9: r6 = 456;
10: r1 = 123;						r6
11: call pc+10;						r1, r6
				22: r0 = r1;		r1
				23: exit		r0
12: r1 = <map_pointer>					r0, r6
13: r1 += r0;						r0, r6
14: r1 += r6;						r6;
15: exit

As can be seen above main function is passing 123 as single argument to
an identity (`return x;`) subprog. Returned value is used to adjust map
pointer offset, which forces r0 to be marked as precise. Then
instruction #14 does the same for callee-saved r6, which will have to be
backtracked all the way to instruction #9. For brevity, precision sets
for instruction #13 and #14 are combined in the diagram above.

First, for subprog calls, r0 returned from subprog (in frame 0) has to
go into subprog's frame 1, and should be cleared from frame 0. So we go
back into subprog's frame knowing we need to mark r0 precise. We then
see that insn #22 sets r0 from r1, so now we care about marking r1
precise.  When we pop up from subprog's frame back into caller at
insn #11 we keep r1, as it's an argument-passing register, so we eventually
find `10: r1 = 123;` and satify precision propagation chain for insn #13.

This example demonstrates two sets of rules:
  - r0 returned after subprog call has to be moved into subprog's r0 set;
  - *static* subprog arguments (r1-r5) are moved back to caller precision set.

Let's look at what happens with callee-saved precision propagation. Insn #14
mark r6 as precise. When we get into subprog's frame, we keep r6 in
frame 0's precision set *only*. Subprog itself has its own set of
independent r6-r10 registers and is not affected. When we eventually
made our way out of subprog frame we keep r6 in precision set until we
reach `9: r6 = 456;`, satisfying propagation. r6-r10 propagation is
perhaps the simplest aspect, it always stays in its original frame.

That's pretty much all we have to do to support precision propagation
across *static subprog* invocation.

Let's look at what happens when we have global subprog invocation.

frame 0				frame 1			precision set
=======				=======			=============

 9: r6 = 456;
10: r1 = 123;						r6
11: call pc+10; # global subprog			r6
12: r1 = <map_pointer>					r0, r6
13: r1 += r0;						r0, r6
14: r1 += r6;						r6;
15: exit

Starting from insn #13, r0 has to be precise. We backtrack all the way
to insn #11 (call pc+10) and see that subprog is global, so was already
validated in isolation. As opposed to static subprog, global subprog
always returns unknown scalar r0, so that satisfies precision
propagation and we drop r0 from precision set. We are done for insns #13.

Now for insn #14. r6 is in precision set, we backtrack to `call pc+10;`.
Here we need to recognize that this is effectively both exit and entry
to global subprog, which means we stay in caller's frame. So we carry on
with r6 still in precision set, until we satisfy it at insn #9. The only
hard part with global subprogs is just knowing when it's a global func.

Lastly, callback-calling helpers and kfuncs do simulate subprog calls,
so jump history will have subprog instructions in between caller
program's instructions, but the rules of propagating r0 and r1-r5
differ, because we don't actually directly call callback. We actually
call helper/kfunc, which at runtime will call subprog, so the only
difference between normal helper/kfunc handling is that we need to make
sure to skip callback simulatinog part of jump history.
Let's look at an example to make this clearer.

frame 0				frame 1			precision set
=======				=======			=============

 8: r6 = 456;
 9: r1 = 123;						r6
10: r2 = &callback;					r6
11: call bpf_loop;					r6
				22: r0 = r1;
				23: exit
12: r1 = <map_pointer>					r0, r6
13: r1 += r0;						r0, r6
14: r1 += r6;						r6;
15: exit

Again, insn #13 forces r0 to be precise. As soon as we get to `23: exit`
we see that this isn't actually a static subprog call (it's `call
bpf_loop;` helper call instead). So we clear r0 from precision set.

For callee-saved register, there is no difference: it stays in frame 0's
precision set, we go through insn #22 and #23, ignoring them until we
get back to caller frame 0, eventually satisfying precision backtrack
logic at insn #8 (`r6 = 456;`).

Assuming callback needed to set r0 as precise at insn #23, we'd
backtrack to insn #22, switching from r0 to r1, and then at the point
when we pop back to frame 0 at insn #11, we'll clear r1-r5 from
precision set, as we don't really do a subprog call directly, so there
is no input argument precision propagation.

That's pretty much it. With these changes, it seems like the only still
unsupported situation for precision backpropagation is the case when
program is accessing stack through registers other than r10. This is
still left as unsupported (though rare) case for now.

As for results. For selftests, few positive changes for bigger programs,
cls_redirect in dynptr variant benefitting the most:

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results.csv ~/subprog-precise-after-results.csv -f @veristat.cfg -e file,prog,insns -f 'insns_diff!=0'
File                                      Program        Insns (A)  Insns (B)  Insns     (DIFF)
----------------------------------------  -------------  ---------  ---------  ----------------
pyperf600_bpf_loop.bpf.linked1.o          on_event            2060       2002      -58 (-2.82%)
test_cls_redirect_dynptr.bpf.linked1.o    cls_redirect       15660       2914  -12746 (-81.39%)
test_cls_redirect_subprogs.bpf.linked1.o  cls_redirect       61620      59088    -2532 (-4.11%)
xdp_synproxy_kern.bpf.linked1.o           syncookie_tc      109980      86278  -23702 (-21.55%)
xdp_synproxy_kern.bpf.linked1.o           syncookie_xdp      97716      85147  -12569 (-12.86%)

Cilium progress don't really regress. They don't use subprogs and are
mostly unaffected, but some other fixes and improvements could have
changed something. This doesn't appear to be the case:

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-cilium.csv ~/subprog-precise-after-results-cilium.csv -e file,prog,insns -f 'insns_diff!=0'
File           Program                         Insns (A)  Insns (B)  Insns (DIFF)
-------------  ------------------------------  ---------  ---------  ------------
bpf_host.o     tail_nodeport_nat_ingress_ipv6       4983       5003  +20 (+0.40%)
bpf_lxc.o      tail_nodeport_nat_ingress_ipv6       4983       5003  +20 (+0.40%)
bpf_overlay.o  tail_nodeport_nat_ingress_ipv6       4983       5003  +20 (+0.40%)
bpf_xdp.o      tail_handle_nat_fwd_ipv6            12475      12504  +29 (+0.23%)
bpf_xdp.o      tail_nodeport_nat_ingress_ipv6       6363       6371   +8 (+0.13%)

Looking at (somewhat anonymized) Meta production programs, we see mostly
insignificant variation in number of instructions, with one program
(syar_bind6_protect6) benefitting the most at -17%.

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-fbcode.csv ~/subprog-precise-after-results-fbcode.csv -e prog,insns -f 'insns_diff!=0'
Program                   Insns (A)  Insns (B)  Insns     (DIFF)
------------------------  ---------  ---------  ----------------
on_request_context_event        597        585      -12 (-2.01%)
read_async_py_stack           43789      43657     -132 (-0.30%)
read_sync_py_stack            35041      37599    +2558 (+7.30%)
rrm_usdt                        946        940       -6 (-0.63%)
sysarmor_inet6_bind           28863      28249     -614 (-2.13%)
sysarmor_inet_bind            28845      28240     -605 (-2.10%)
syar_bind4_protect4          154145     147640    -6505 (-4.22%)
syar_bind6_protect6          165242     137088  -28154 (-17.04%)
syar_task_exit_setgid         21289      19720    -1569 (-7.37%)
syar_task_exit_setuid         21290      19721    -1569 (-7.37%)
do_uprobe                     19967      19413     -554 (-2.77%)
tw_twfw_ingress              215877     204833   -11044 (-5.12%)
tw_twfw_tc_in                215877     204833   -11044 (-5.12%)

But checking duration (wall clock) differences, that is the actual time taken
by verifier to validate programs, we see a sometimes dramatic improvements, all
the way to about 16x improvements:

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-meta.csv ~/subprog-precise-after-results-meta.csv -e prog,duration -s duration_diff^ | head -n20
Program                                   Duration (us) (A)  Duration (us) (B)  Duration (us) (DIFF)
----------------------------------------  -----------------  -----------------  --------------------
tw_twfw_ingress                                     4488374             272836    -4215538 (-93.92%)
tw_twfw_tc_in                                       4339111             268175    -4070936 (-93.82%)
tw_twfw_egress                                      3521816             270751    -3251065 (-92.31%)
tw_twfw_tc_eg                                       3472878             284294    -3188584 (-91.81%)
balancer_ingress                                     343119             291391      -51728 (-15.08%)
syar_bind6_protect6                                   78992              64782      -14210 (-17.99%)
ttls_tc_ingress                                       11739               8176       -3563 (-30.35%)
kprobe__security_inode_link                           13864              11341       -2523 (-18.20%)
read_sync_py_stack                                    21927              19442       -2485 (-11.33%)
read_async_py_stack                                   30444              28136        -2308 (-7.58%)
syar_task_exit_setuid                                 10256               8440       -1816 (-17.71%)

Signed-off-by: Andrii Nakryiko <[email protected]>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Apr 28, 2023
Add support precision backtracking in the presence of subprogram frames in
jump history.

This means supporting a few different kinds of subprogram invocation
situations, all requiring a slightly different handling in precision
backtracking handling logic:
  - static subprogram calls;
  - global subprogram calls;
  - callback-calling helpers/kfuncs.

For each of those we need to handle a few precision propagation cases:
  - what to do with precision of subprog returns (r0);
  - what to do with precision of input arguments;
  - for all of them callee-saved registers in caller function should be
    propagated ignoring subprog/callback part of jump history.

N.B. Async callback-calling helpers (currently only
bpf_timer_set_callback()) are transparent to all this because they set
a separate async callback environment and thus callback's history is not
shared with main program's history. So as far as all the changes in this
commit goes, such helper is just a regular helper.

Let's look at all these situation in more details. Let's start with
static subprogram being called, using an exxerpt of a simple main
program and its static subprog, indenting subprog's frame slightly to
make everything clear.

frame 0				frame 1			precision set
=======				=======			=============

 9: r6 = 456;
10: r1 = 123;						r6
11: call pc+10;						r1, r6
				22: r0 = r1;		r1
				23: exit		r0
12: r1 = <map_pointer>					r0, r6
13: r1 += r0;						r0, r6
14: r1 += r6;						r6;
15: exit

As can be seen above main function is passing 123 as single argument to
an identity (`return x;`) subprog. Returned value is used to adjust map
pointer offset, which forces r0 to be marked as precise. Then
instruction #14 does the same for callee-saved r6, which will have to be
backtracked all the way to instruction #9. For brevity, precision sets
for instruction #13 and #14 are combined in the diagram above.

First, for subprog calls, r0 returned from subprog (in frame 0) has to
go into subprog's frame 1, and should be cleared from frame 0. So we go
back into subprog's frame knowing we need to mark r0 precise. We then
see that insn #22 sets r0 from r1, so now we care about marking r1
precise.  When we pop up from subprog's frame back into caller at
insn #11 we keep r1, as it's an argument-passing register, so we eventually
find `10: r1 = 123;` and satify precision propagation chain for insn #13.

This example demonstrates two sets of rules:
  - r0 returned after subprog call has to be moved into subprog's r0 set;
  - *static* subprog arguments (r1-r5) are moved back to caller precision set.

Let's look at what happens with callee-saved precision propagation. Insn #14
mark r6 as precise. When we get into subprog's frame, we keep r6 in
frame 0's precision set *only*. Subprog itself has its own set of
independent r6-r10 registers and is not affected. When we eventually
made our way out of subprog frame we keep r6 in precision set until we
reach `9: r6 = 456;`, satisfying propagation. r6-r10 propagation is
perhaps the simplest aspect, it always stays in its original frame.

That's pretty much all we have to do to support precision propagation
across *static subprog* invocation.

Let's look at what happens when we have global subprog invocation.

frame 0				frame 1			precision set
=======				=======			=============

 9: r6 = 456;
10: r1 = 123;						r6
11: call pc+10; # global subprog			r6
12: r1 = <map_pointer>					r0, r6
13: r1 += r0;						r0, r6
14: r1 += r6;						r6;
15: exit

Starting from insn #13, r0 has to be precise. We backtrack all the way
to insn #11 (call pc+10) and see that subprog is global, so was already
validated in isolation. As opposed to static subprog, global subprog
always returns unknown scalar r0, so that satisfies precision
propagation and we drop r0 from precision set. We are done for insns #13.

Now for insn #14. r6 is in precision set, we backtrack to `call pc+10;`.
Here we need to recognize that this is effectively both exit and entry
to global subprog, which means we stay in caller's frame. So we carry on
with r6 still in precision set, until we satisfy it at insn #9. The only
hard part with global subprogs is just knowing when it's a global func.

Lastly, callback-calling helpers and kfuncs do simulate subprog calls,
so jump history will have subprog instructions in between caller
program's instructions, but the rules of propagating r0 and r1-r5
differ, because we don't actually directly call callback. We actually
call helper/kfunc, which at runtime will call subprog, so the only
difference between normal helper/kfunc handling is that we need to make
sure to skip callback simulatinog part of jump history.
Let's look at an example to make this clearer.

frame 0				frame 1			precision set
=======				=======			=============

 8: r6 = 456;
 9: r1 = 123;						r6
10: r2 = &callback;					r6
11: call bpf_loop;					r6
				22: r0 = r1;
				23: exit
12: r1 = <map_pointer>					r0, r6
13: r1 += r0;						r0, r6
14: r1 += r6;						r6;
15: exit

Again, insn #13 forces r0 to be precise. As soon as we get to `23: exit`
we see that this isn't actually a static subprog call (it's `call
bpf_loop;` helper call instead). So we clear r0 from precision set.

For callee-saved register, there is no difference: it stays in frame 0's
precision set, we go through insn #22 and #23, ignoring them until we
get back to caller frame 0, eventually satisfying precision backtrack
logic at insn #8 (`r6 = 456;`).

Assuming callback needed to set r0 as precise at insn #23, we'd
backtrack to insn #22, switching from r0 to r1, and then at the point
when we pop back to frame 0 at insn #11, we'll clear r1-r5 from
precision set, as we don't really do a subprog call directly, so there
is no input argument precision propagation.

That's pretty much it. With these changes, it seems like the only still
unsupported situation for precision backpropagation is the case when
program is accessing stack through registers other than r10. This is
still left as unsupported (though rare) case for now.

As for results. For selftests, few positive changes for bigger programs,
cls_redirect in dynptr variant benefitting the most:

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results.csv ~/subprog-precise-after-results.csv -f @veristat.cfg -e file,prog,insns -f 'insns_diff!=0'
File                                      Program        Insns (A)  Insns (B)  Insns     (DIFF)
----------------------------------------  -------------  ---------  ---------  ----------------
pyperf600_bpf_loop.bpf.linked1.o          on_event            2060       2002      -58 (-2.82%)
test_cls_redirect_dynptr.bpf.linked1.o    cls_redirect       15660       2914  -12746 (-81.39%)
test_cls_redirect_subprogs.bpf.linked1.o  cls_redirect       61620      59088    -2532 (-4.11%)
xdp_synproxy_kern.bpf.linked1.o           syncookie_tc      109980      86278  -23702 (-21.55%)
xdp_synproxy_kern.bpf.linked1.o           syncookie_xdp      97716      85147  -12569 (-12.86%)

Cilium progress don't really regress. They don't use subprogs and are
mostly unaffected, but some other fixes and improvements could have
changed something. This doesn't appear to be the case:

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-cilium.csv ~/subprog-precise-after-results-cilium.csv -e file,prog,insns -f 'insns_diff!=0'
File           Program                         Insns (A)  Insns (B)  Insns (DIFF)
-------------  ------------------------------  ---------  ---------  ------------
bpf_host.o     tail_nodeport_nat_ingress_ipv6       4983       5003  +20 (+0.40%)
bpf_lxc.o      tail_nodeport_nat_ingress_ipv6       4983       5003  +20 (+0.40%)
bpf_overlay.o  tail_nodeport_nat_ingress_ipv6       4983       5003  +20 (+0.40%)
bpf_xdp.o      tail_handle_nat_fwd_ipv6            12475      12504  +29 (+0.23%)
bpf_xdp.o      tail_nodeport_nat_ingress_ipv6       6363       6371   +8 (+0.13%)

Looking at (somewhat anonymized) Meta production programs, we see mostly
insignificant variation in number of instructions, with one program
(syar_bind6_protect6) benefitting the most at -17%.

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-fbcode.csv ~/subprog-precise-after-results-fbcode.csv -e prog,insns -f 'insns_diff!=0'
Program                   Insns (A)  Insns (B)  Insns     (DIFF)
------------------------  ---------  ---------  ----------------
on_request_context_event        597        585      -12 (-2.01%)
read_async_py_stack           43789      43657     -132 (-0.30%)
read_sync_py_stack            35041      37599    +2558 (+7.30%)
rrm_usdt                        946        940       -6 (-0.63%)
sysarmor_inet6_bind           28863      28249     -614 (-2.13%)
sysarmor_inet_bind            28845      28240     -605 (-2.10%)
syar_bind4_protect4          154145     147640    -6505 (-4.22%)
syar_bind6_protect6          165242     137088  -28154 (-17.04%)
syar_task_exit_setgid         21289      19720    -1569 (-7.37%)
syar_task_exit_setuid         21290      19721    -1569 (-7.37%)
do_uprobe                     19967      19413     -554 (-2.77%)
tw_twfw_ingress              215877     204833   -11044 (-5.12%)
tw_twfw_tc_in                215877     204833   -11044 (-5.12%)

But checking duration (wall clock) differences, that is the actual time taken
by verifier to validate programs, we see a sometimes dramatic improvements, all
the way to about 16x improvements:

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-meta.csv ~/subprog-precise-after-results-meta.csv -e prog,duration -s duration_diff^ | head -n20
Program                                   Duration (us) (A)  Duration (us) (B)  Duration (us) (DIFF)
----------------------------------------  -----------------  -----------------  --------------------
tw_twfw_ingress                                     4488374             272836    -4215538 (-93.92%)
tw_twfw_tc_in                                       4339111             268175    -4070936 (-93.82%)
tw_twfw_egress                                      3521816             270751    -3251065 (-92.31%)
tw_twfw_tc_eg                                       3472878             284294    -3188584 (-91.81%)
balancer_ingress                                     343119             291391      -51728 (-15.08%)
syar_bind6_protect6                                   78992              64782      -14210 (-17.99%)
ttls_tc_ingress                                       11739               8176       -3563 (-30.35%)
kprobe__security_inode_link                           13864              11341       -2523 (-18.20%)
read_sync_py_stack                                    21927              19442       -2485 (-11.33%)
read_async_py_stack                                   30444              28136        -2308 (-7.58%)
syar_task_exit_setuid                                 10256               8440       -1816 (-17.71%)

Signed-off-by: Andrii Nakryiko <[email protected]>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Apr 28, 2023
Add support precision backtracking in the presence of subprogram frames in
jump history.

This means supporting a few different kinds of subprogram invocation
situations, all requiring a slightly different handling in precision
backtracking handling logic:
  - static subprogram calls;
  - global subprogram calls;
  - callback-calling helpers/kfuncs.

For each of those we need to handle a few precision propagation cases:
  - what to do with precision of subprog returns (r0);
  - what to do with precision of input arguments;
  - for all of them callee-saved registers in caller function should be
    propagated ignoring subprog/callback part of jump history.

N.B. Async callback-calling helpers (currently only
bpf_timer_set_callback()) are transparent to all this because they set
a separate async callback environment and thus callback's history is not
shared with main program's history. So as far as all the changes in this
commit goes, such helper is just a regular helper.

Let's look at all these situation in more details. Let's start with
static subprogram being called, using an exxerpt of a simple main
program and its static subprog, indenting subprog's frame slightly to
make everything clear.

frame 0				frame 1			precision set
=======				=======			=============

 9: r6 = 456;
10: r1 = 123;						r6
11: call pc+10;						r1, r6
				22: r0 = r1;		r1
				23: exit		r0
12: r1 = <map_pointer>					r0, r6
13: r1 += r0;						r0, r6
14: r1 += r6;						r6;
15: exit

As can be seen above main function is passing 123 as single argument to
an identity (`return x;`) subprog. Returned value is used to adjust map
pointer offset, which forces r0 to be marked as precise. Then
instruction #14 does the same for callee-saved r6, which will have to be
backtracked all the way to instruction #9. For brevity, precision sets
for instruction #13 and #14 are combined in the diagram above.

First, for subprog calls, r0 returned from subprog (in frame 0) has to
go into subprog's frame 1, and should be cleared from frame 0. So we go
back into subprog's frame knowing we need to mark r0 precise. We then
see that insn #22 sets r0 from r1, so now we care about marking r1
precise.  When we pop up from subprog's frame back into caller at
insn #11 we keep r1, as it's an argument-passing register, so we eventually
find `10: r1 = 123;` and satify precision propagation chain for insn #13.

This example demonstrates two sets of rules:
  - r0 returned after subprog call has to be moved into subprog's r0 set;
  - *static* subprog arguments (r1-r5) are moved back to caller precision set.

Let's look at what happens with callee-saved precision propagation. Insn #14
mark r6 as precise. When we get into subprog's frame, we keep r6 in
frame 0's precision set *only*. Subprog itself has its own set of
independent r6-r10 registers and is not affected. When we eventually
made our way out of subprog frame we keep r6 in precision set until we
reach `9: r6 = 456;`, satisfying propagation. r6-r10 propagation is
perhaps the simplest aspect, it always stays in its original frame.

That's pretty much all we have to do to support precision propagation
across *static subprog* invocation.

Let's look at what happens when we have global subprog invocation.

frame 0				frame 1			precision set
=======				=======			=============

 9: r6 = 456;
10: r1 = 123;						r6
11: call pc+10; # global subprog			r6
12: r1 = <map_pointer>					r0, r6
13: r1 += r0;						r0, r6
14: r1 += r6;						r6;
15: exit

Starting from insn #13, r0 has to be precise. We backtrack all the way
to insn #11 (call pc+10) and see that subprog is global, so was already
validated in isolation. As opposed to static subprog, global subprog
always returns unknown scalar r0, so that satisfies precision
propagation and we drop r0 from precision set. We are done for insns #13.

Now for insn #14. r6 is in precision set, we backtrack to `call pc+10;`.
Here we need to recognize that this is effectively both exit and entry
to global subprog, which means we stay in caller's frame. So we carry on
with r6 still in precision set, until we satisfy it at insn #9. The only
hard part with global subprogs is just knowing when it's a global func.

Lastly, callback-calling helpers and kfuncs do simulate subprog calls,
so jump history will have subprog instructions in between caller
program's instructions, but the rules of propagating r0 and r1-r5
differ, because we don't actually directly call callback. We actually
call helper/kfunc, which at runtime will call subprog, so the only
difference between normal helper/kfunc handling is that we need to make
sure to skip callback simulatinog part of jump history.
Let's look at an example to make this clearer.

frame 0				frame 1			precision set
=======				=======			=============

 8: r6 = 456;
 9: r1 = 123;						r6
10: r2 = &callback;					r6
11: call bpf_loop;					r6
				22: r0 = r1;
				23: exit
12: r1 = <map_pointer>					r0, r6
13: r1 += r0;						r0, r6
14: r1 += r6;						r6;
15: exit

Again, insn #13 forces r0 to be precise. As soon as we get to `23: exit`
we see that this isn't actually a static subprog call (it's `call
bpf_loop;` helper call instead). So we clear r0 from precision set.

For callee-saved register, there is no difference: it stays in frame 0's
precision set, we go through insn #22 and #23, ignoring them until we
get back to caller frame 0, eventually satisfying precision backtrack
logic at insn #8 (`r6 = 456;`).

Assuming callback needed to set r0 as precise at insn #23, we'd
backtrack to insn #22, switching from r0 to r1, and then at the point
when we pop back to frame 0 at insn #11, we'll clear r1-r5 from
precision set, as we don't really do a subprog call directly, so there
is no input argument precision propagation.

That's pretty much it. With these changes, it seems like the only still
unsupported situation for precision backpropagation is the case when
program is accessing stack through registers other than r10. This is
still left as unsupported (though rare) case for now.

As for results. For selftests, few positive changes for bigger programs,
cls_redirect in dynptr variant benefitting the most:

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results.csv ~/subprog-precise-after-results.csv -f @veristat.cfg -e file,prog,insns -f 'insns_diff!=0'
File                                      Program        Insns (A)  Insns (B)  Insns     (DIFF)
----------------------------------------  -------------  ---------  ---------  ----------------
pyperf600_bpf_loop.bpf.linked1.o          on_event            2060       2002      -58 (-2.82%)
test_cls_redirect_dynptr.bpf.linked1.o    cls_redirect       15660       2914  -12746 (-81.39%)
test_cls_redirect_subprogs.bpf.linked1.o  cls_redirect       61620      59088    -2532 (-4.11%)
xdp_synproxy_kern.bpf.linked1.o           syncookie_tc      109980      86278  -23702 (-21.55%)
xdp_synproxy_kern.bpf.linked1.o           syncookie_xdp      97716      85147  -12569 (-12.86%)

Cilium progress don't really regress. They don't use subprogs and are
mostly unaffected, but some other fixes and improvements could have
changed something. This doesn't appear to be the case:

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-cilium.csv ~/subprog-precise-after-results-cilium.csv -e file,prog,insns -f 'insns_diff!=0'
File           Program                         Insns (A)  Insns (B)  Insns (DIFF)
-------------  ------------------------------  ---------  ---------  ------------
bpf_host.o     tail_nodeport_nat_ingress_ipv6       4983       5003  +20 (+0.40%)
bpf_lxc.o      tail_nodeport_nat_ingress_ipv6       4983       5003  +20 (+0.40%)
bpf_overlay.o  tail_nodeport_nat_ingress_ipv6       4983       5003  +20 (+0.40%)
bpf_xdp.o      tail_handle_nat_fwd_ipv6            12475      12504  +29 (+0.23%)
bpf_xdp.o      tail_nodeport_nat_ingress_ipv6       6363       6371   +8 (+0.13%)

Looking at (somewhat anonymized) Meta production programs, we see mostly
insignificant variation in number of instructions, with one program
(syar_bind6_protect6) benefitting the most at -17%.

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-fbcode.csv ~/subprog-precise-after-results-fbcode.csv -e prog,insns -f 'insns_diff!=0'
Program                   Insns (A)  Insns (B)  Insns     (DIFF)
------------------------  ---------  ---------  ----------------
on_request_context_event        597        585      -12 (-2.01%)
read_async_py_stack           43789      43657     -132 (-0.30%)
read_sync_py_stack            35041      37599    +2558 (+7.30%)
rrm_usdt                        946        940       -6 (-0.63%)
sysarmor_inet6_bind           28863      28249     -614 (-2.13%)
sysarmor_inet_bind            28845      28240     -605 (-2.10%)
syar_bind4_protect4          154145     147640    -6505 (-4.22%)
syar_bind6_protect6          165242     137088  -28154 (-17.04%)
syar_task_exit_setgid         21289      19720    -1569 (-7.37%)
syar_task_exit_setuid         21290      19721    -1569 (-7.37%)
do_uprobe                     19967      19413     -554 (-2.77%)
tw_twfw_ingress              215877     204833   -11044 (-5.12%)
tw_twfw_tc_in                215877     204833   -11044 (-5.12%)

But checking duration (wall clock) differences, that is the actual time taken
by verifier to validate programs, we see a sometimes dramatic improvements, all
the way to about 16x improvements:

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-meta.csv ~/subprog-precise-after-results-meta.csv -e prog,duration -s duration_diff^ | head -n20
Program                                   Duration (us) (A)  Duration (us) (B)  Duration (us) (DIFF)
----------------------------------------  -----------------  -----------------  --------------------
tw_twfw_ingress                                     4488374             272836    -4215538 (-93.92%)
tw_twfw_tc_in                                       4339111             268175    -4070936 (-93.82%)
tw_twfw_egress                                      3521816             270751    -3251065 (-92.31%)
tw_twfw_tc_eg                                       3472878             284294    -3188584 (-91.81%)
balancer_ingress                                     343119             291391      -51728 (-15.08%)
syar_bind6_protect6                                   78992              64782      -14210 (-17.99%)
ttls_tc_ingress                                       11739               8176       -3563 (-30.35%)
kprobe__security_inode_link                           13864              11341       -2523 (-18.20%)
read_sync_py_stack                                    21927              19442       -2485 (-11.33%)
read_async_py_stack                                   30444              28136        -2308 (-7.58%)
syar_task_exit_setuid                                 10256               8440       -1816 (-17.71%)

Signed-off-by: Andrii Nakryiko <[email protected]>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Jul 12, 2024
With latest llvm19, the selftest iters/iter_arr_with_actual_elem_count
failed with -mcpu=v4.

The following are the details:
  0: R1=ctx() R10=fp0
  ; int iter_arr_with_actual_elem_count(const void *ctx) @ iters.c:1420
  0: (b4) w7 = 0                        ; R7_w=0
  ; int i, n = loop_data.n, sum = 0; @ iters.c:1422
  1: (18) r1 = 0xffffc90000191478       ; R1_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144)
  3: (61) r6 = *(u32 *)(r1 +128)        ; R1_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144) R6_w=scalar(smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff))
  ; if (n > ARRAY_SIZE(loop_data.data)) @ iters.c:1424
  4: (26) if w6 > 0x20 goto pc+27       ; R6_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f))
  5: (bf) r8 = r10                      ; R8_w=fp0 R10=fp0
  6: (07) r8 += -8                      ; R8_w=fp-8
  ; bpf_for(i, 0, n) { @ iters.c:1427
  7: (bf) r1 = r8                       ; R1_w=fp-8 R8_w=fp-8
  8: (b4) w2 = 0                        ; R2_w=0
  9: (bc) w3 = w6                       ; R3_w=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R6_w=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f))
  10: (85) call bpf_iter_num_new#45179          ; R0=scalar() fp-8=iter_num(ref_id=2,state=active,depth=0) refs=2
  11: (bf) r1 = r8                      ; R1=fp-8 R8=fp-8 refs=2
  12: (85) call bpf_iter_num_next#45181 13: R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R6=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=0 R8=fp-8 R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=1) refs=2
  ; bpf_for(i, 0, n) { @ iters.c:1427
  13: (15) if r0 == 0x0 goto pc+2       ; R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) refs=2
  14: (81) r1 = *(s32 *)(r0 +0)         ; R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R1_w=scalar(smin=0xffffffff80000000,smax=0x7fffffff) refs=2
  15: (ae) if w1 < w6 goto pc+4 20: R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R1=scalar(smin=0xffffffff80000000,smax=smax32=umax32=31,umax=0xffffffff0000001f,smin32=0,var_off=(0x0; 0xffffffff0000001f)) R6=scalar(id=1,smin=umin=smin32=umin32=1,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=0 R8=fp-8 R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=1) refs=2
  ; sum += loop_data.data[i]; @ iters.c:1429
  20: (67) r1 <<= 2                     ; R1_w=scalar(smax=0x7ffffffc0000007c,umax=0xfffffffc0000007c,smin32=0,smax32=umax32=124,var_off=(0x0; 0xfffffffc0000007c)) refs=2
  21: (18) r2 = 0xffffc90000191478      ; R2_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144) refs=2
  23: (0f) r2 += r1
  math between map_value pointer and register with unbounded min value is not allowed

The source code:
  int iter_arr_with_actual_elem_count(const void *ctx)
  {
        int i, n = loop_data.n, sum = 0;

        if (n > ARRAY_SIZE(loop_data.data))
                return 0;

        bpf_for(i, 0, n) {
                /* no rechecking of i against ARRAY_SIZE(loop_data.n) */
                sum += loop_data.data[i];
        }

        return sum;
  }

The insn #14 is a sign-extenstion load which is related to 'int i'.
The insn #15 did a subreg comparision. Note that smin=0xffffffff80000000 and this caused later
insn #23 failed verification due to unbounded min value.

Actually insn #15 R1 smin range can be better. Before insn #15, we have
  R1_w=scalar(smin=0xffffffff80000000,smax=0x7fffffff)
With the above range, we know for R1, upper 32bit can only be 0xffffffff or 0.
Otherwise, the value range for R1 could be beyond [smin=0xffffffff80000000,smax=0x7fffffff].

After insn #15, for the true patch, we know smin32=0 and smax32=32. With the upper 32bit 0xffffffff,
then the corresponding value is [0xffffffff00000000, 0xffffffff00000020]. The range is
obviously beyond the original range [smin=0xffffffff80000000,smax=0x7fffffff] and the
range is not possible. So the upper 32bit must be 0, which implies smin = smin32 and
smax = smax32.

This patch fixed the issue by adding additional register deduction after 32-bit compare
insn such that if the signed 32-bit register range is non-negative and 64-bit smin is
in range of [{S32/S16/S8}_MIN, 0) and 64-bit max is no greater than {U32/U16/U8}_MAX.

With this patch, iters/iter_arr_with_actual_elem_count succeeded with better register range:

from 15 to 20: R0=rdonly_mem(id=7,ref_obj_id=2,sz=4) R1_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=31,var_off=(0x0; 0x1f)) R6=scalar(id=1,smin=umin=smin32=umin32=1,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=scalar(id=9,smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff)) R8=scalar(id=9,smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff)) R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=3) refs=2

Signed-off-by: Yonghong Song <[email protected]>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Jul 12, 2024
With latest llvm19, the selftest iters/iter_arr_with_actual_elem_count
failed with -mcpu=v4.

The following are the details:
  0: R1=ctx() R10=fp0
  ; int iter_arr_with_actual_elem_count(const void *ctx) @ iters.c:1420
  0: (b4) w7 = 0                        ; R7_w=0
  ; int i, n = loop_data.n, sum = 0; @ iters.c:1422
  1: (18) r1 = 0xffffc90000191478       ; R1_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144)
  3: (61) r6 = *(u32 *)(r1 +128)        ; R1_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144) R6_w=scalar(smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff))
  ; if (n > ARRAY_SIZE(loop_data.data)) @ iters.c:1424
  4: (26) if w6 > 0x20 goto pc+27       ; R6_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f))
  5: (bf) r8 = r10                      ; R8_w=fp0 R10=fp0
  6: (07) r8 += -8                      ; R8_w=fp-8
  ; bpf_for(i, 0, n) { @ iters.c:1427
  7: (bf) r1 = r8                       ; R1_w=fp-8 R8_w=fp-8
  8: (b4) w2 = 0                        ; R2_w=0
  9: (bc) w3 = w6                       ; R3_w=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R6_w=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f))
  10: (85) call bpf_iter_num_new#45179          ; R0=scalar() fp-8=iter_num(ref_id=2,state=active,depth=0) refs=2
  11: (bf) r1 = r8                      ; R1=fp-8 R8=fp-8 refs=2
  12: (85) call bpf_iter_num_next#45181 13: R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R6=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=0 R8=fp-8 R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=1) refs=2
  ; bpf_for(i, 0, n) { @ iters.c:1427
  13: (15) if r0 == 0x0 goto pc+2       ; R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) refs=2
  14: (81) r1 = *(s32 *)(r0 +0)         ; R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R1_w=scalar(smin=0xffffffff80000000,smax=0x7fffffff) refs=2
  15: (ae) if w1 < w6 goto pc+4 20: R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R1=scalar(smin=0xffffffff80000000,smax=smax32=umax32=31,umax=0xffffffff0000001f,smin32=0,var_off=(0x0; 0xffffffff0000001f)) R6=scalar(id=1,smin=umin=smin32=umin32=1,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=0 R8=fp-8 R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=1) refs=2
  ; sum += loop_data.data[i]; @ iters.c:1429
  20: (67) r1 <<= 2                     ; R1_w=scalar(smax=0x7ffffffc0000007c,umax=0xfffffffc0000007c,smin32=0,smax32=umax32=124,var_off=(0x0; 0xfffffffc0000007c)) refs=2
  21: (18) r2 = 0xffffc90000191478      ; R2_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144) refs=2
  23: (0f) r2 += r1
  math between map_value pointer and register with unbounded min value is not allowed

The source code:
  int iter_arr_with_actual_elem_count(const void *ctx)
  {
        int i, n = loop_data.n, sum = 0;

        if (n > ARRAY_SIZE(loop_data.data))
                return 0;

        bpf_for(i, 0, n) {
                /* no rechecking of i against ARRAY_SIZE(loop_data.n) */
                sum += loop_data.data[i];
        }

        return sum;
  }

The insn #14 is a sign-extenstion load which is related to 'int i'.
The insn #15 did a subreg comparision. Note that smin=0xffffffff80000000 and this caused later
insn #23 failed verification due to unbounded min value.

Actually insn #15 R1 smin range can be better. Before insn #15, we have
  R1_w=scalar(smin=0xffffffff80000000,smax=0x7fffffff)
With the above range, we know for R1, upper 32bit can only be 0xffffffff or 0.
Otherwise, the value range for R1 could be beyond [smin=0xffffffff80000000,smax=0x7fffffff].

After insn #15, for the true patch, we know smin32=0 and smax32=32. With the upper 32bit 0xffffffff,
then the corresponding value is [0xffffffff00000000, 0xffffffff00000020]. The range is
obviously beyond the original range [smin=0xffffffff80000000,smax=0x7fffffff] and the
range is not possible. So the upper 32bit must be 0, which implies smin = smin32 and
smax = smax32.

This patch fixed the issue by adding additional register deduction after 32-bit compare
insn. If the signed 32-bit register range is non-negative then 64-bit smin is
in range of [S32_MIN, S32_MAX], then the actual 64-bit smin/smax should be the same
as 32-bit smin32/smax32.

With this patch, iters/iter_arr_with_actual_elem_count succeeded with better register range:

from 15 to 20: R0=rdonly_mem(id=7,ref_obj_id=2,sz=4) R1_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=31,var_off=(0x0; 0x1f)) R6=scalar(id=1,smin=umin=smin32=umin32=1,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=scalar(id=9,smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff)) R8=scalar(id=9,smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff)) R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=3) refs=2

Signed-off-by: Yonghong Song <[email protected]>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Jul 13, 2024
With latest llvm19, the selftest iters/iter_arr_with_actual_elem_count
failed with -mcpu=v4.

The following are the details:
  0: R1=ctx() R10=fp0
  ; int iter_arr_with_actual_elem_count(const void *ctx) @ iters.c:1420
  0: (b4) w7 = 0                        ; R7_w=0
  ; int i, n = loop_data.n, sum = 0; @ iters.c:1422
  1: (18) r1 = 0xffffc90000191478       ; R1_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144)
  3: (61) r6 = *(u32 *)(r1 +128)        ; R1_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144) R6_w=scalar(smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff))
  ; if (n > ARRAY_SIZE(loop_data.data)) @ iters.c:1424
  4: (26) if w6 > 0x20 goto pc+27       ; R6_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f))
  5: (bf) r8 = r10                      ; R8_w=fp0 R10=fp0
  6: (07) r8 += -8                      ; R8_w=fp-8
  ; bpf_for(i, 0, n) { @ iters.c:1427
  7: (bf) r1 = r8                       ; R1_w=fp-8 R8_w=fp-8
  8: (b4) w2 = 0                        ; R2_w=0
  9: (bc) w3 = w6                       ; R3_w=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R6_w=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f))
  10: (85) call bpf_iter_num_new#45179          ; R0=scalar() fp-8=iter_num(ref_id=2,state=active,depth=0) refs=2
  11: (bf) r1 = r8                      ; R1=fp-8 R8=fp-8 refs=2
  12: (85) call bpf_iter_num_next#45181 13: R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R6=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=0 R8=fp-8 R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=1) refs=2
  ; bpf_for(i, 0, n) { @ iters.c:1427
  13: (15) if r0 == 0x0 goto pc+2       ; R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) refs=2
  14: (81) r1 = *(s32 *)(r0 +0)         ; R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R1_w=scalar(smin=0xffffffff80000000,smax=0x7fffffff) refs=2
  15: (ae) if w1 < w6 goto pc+4 20: R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R1=scalar(smin=0xffffffff80000000,smax=smax32=umax32=31,umax=0xffffffff0000001f,smin32=0,var_off=(0x0; 0xffffffff0000001f)) R6=scalar(id=1,smin=umin=smin32=umin32=1,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=0 R8=fp-8 R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=1) refs=2
  ; sum += loop_data.data[i]; @ iters.c:1429
  20: (67) r1 <<= 2                     ; R1_w=scalar(smax=0x7ffffffc0000007c,umax=0xfffffffc0000007c,smin32=0,smax32=umax32=124,var_off=(0x0; 0xfffffffc0000007c)) refs=2
  21: (18) r2 = 0xffffc90000191478      ; R2_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144) refs=2
  23: (0f) r2 += r1
  math between map_value pointer and register with unbounded min value is not allowed

The source code:
  int iter_arr_with_actual_elem_count(const void *ctx)
  {
        int i, n = loop_data.n, sum = 0;

        if (n > ARRAY_SIZE(loop_data.data))
                return 0;

        bpf_for(i, 0, n) {
                /* no rechecking of i against ARRAY_SIZE(loop_data.n) */
                sum += loop_data.data[i];
        }

        return sum;
  }

The insn #14 is a sign-extenstion load which is related to 'int i'.
The insn #15 did a subreg comparision. Note that smin=0xffffffff80000000 and this caused later
insn #23 failed verification due to unbounded min value.

Actually insn #15 R1 smin range can be better. Before insn #15, we have
  R1_w=scalar(smin=0xffffffff80000000,smax=0x7fffffff)
With the above range, we know for R1, upper 32bit can only be 0xffffffff or 0.
Otherwise, the value range for R1 could be beyond [smin=0xffffffff80000000,smax=0x7fffffff].

After insn #15, for the true patch, we know smin32=0 and smax32=32. With the upper 32bit 0xffffffff,
then the corresponding value is [0xffffffff00000000, 0xffffffff00000020]. The range is
obviously beyond the original range [smin=0xffffffff80000000,smax=0x7fffffff] and the
range is not possible. So the upper 32bit must be 0, which implies smin = smin32 and
smax = smax32.

This patch fixed the issue by adding additional register deduction after 32-bit compare
insn. If the signed 32-bit register range is non-negative then 64-bit smin is
in range of [S32_MIN, S32_MAX], then the actual 64-bit smin/smax should be the same
as 32-bit smin32/smax32.

With this patch, iters/iter_arr_with_actual_elem_count succeeded with better register range:

from 15 to 20: R0=rdonly_mem(id=7,ref_obj_id=2,sz=4) R1_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=31,var_off=(0x0; 0x1f)) R6=scalar(id=1,smin=umin=smin32=umin32=1,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=scalar(id=9,smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff)) R8=scalar(id=9,smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff)) R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=3) refs=2

Signed-off-by: Yonghong Song <[email protected]>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Jul 17, 2024
With latest llvm19, the selftest iters/iter_arr_with_actual_elem_count
failed with -mcpu=v4.

The following are the details:
  0: R1=ctx() R10=fp0
  ; int iter_arr_with_actual_elem_count(const void *ctx) @ iters.c:1420
  0: (b4) w7 = 0                        ; R7_w=0
  ; int i, n = loop_data.n, sum = 0; @ iters.c:1422
  1: (18) r1 = 0xffffc90000191478       ; R1_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144)
  3: (61) r6 = *(u32 *)(r1 +128)        ; R1_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144) R6_w=scalar(smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff))
  ; if (n > ARRAY_SIZE(loop_data.data)) @ iters.c:1424
  4: (26) if w6 > 0x20 goto pc+27       ; R6_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f))
  5: (bf) r8 = r10                      ; R8_w=fp0 R10=fp0
  6: (07) r8 += -8                      ; R8_w=fp-8
  ; bpf_for(i, 0, n) { @ iters.c:1427
  7: (bf) r1 = r8                       ; R1_w=fp-8 R8_w=fp-8
  8: (b4) w2 = 0                        ; R2_w=0
  9: (bc) w3 = w6                       ; R3_w=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R6_w=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f))
  10: (85) call bpf_iter_num_new#45179          ; R0=scalar() fp-8=iter_num(ref_id=2,state=active,depth=0) refs=2
  11: (bf) r1 = r8                      ; R1=fp-8 R8=fp-8 refs=2
  12: (85) call bpf_iter_num_next#45181 13: R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R6=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=0 R8=fp-8 R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=1) refs=2
  ; bpf_for(i, 0, n) { @ iters.c:1427
  13: (15) if r0 == 0x0 goto pc+2       ; R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) refs=2
  14: (81) r1 = *(s32 *)(r0 +0)         ; R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R1_w=scalar(smin=0xffffffff80000000,smax=0x7fffffff) refs=2
  15: (ae) if w1 < w6 goto pc+4 20: R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R1=scalar(smin=0xffffffff80000000,smax=smax32=umax32=31,umax=0xffffffff0000001f,smin32=0,var_off=(0x0; 0xffffffff0000001f)) R6=scalar(id=1,smin=umin=smin32=umin32=1,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=0 R8=fp-8 R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=1) refs=2
  ; sum += loop_data.data[i]; @ iters.c:1429
  20: (67) r1 <<= 2                     ; R1_w=scalar(smax=0x7ffffffc0000007c,umax=0xfffffffc0000007c,smin32=0,smax32=umax32=124,var_off=(0x0; 0xfffffffc0000007c)) refs=2
  21: (18) r2 = 0xffffc90000191478      ; R2_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144) refs=2
  23: (0f) r2 += r1
  math between map_value pointer and register with unbounded min value is not allowed

The source code:
  int iter_arr_with_actual_elem_count(const void *ctx)
  {
        int i, n = loop_data.n, sum = 0;

        if (n > ARRAY_SIZE(loop_data.data))
                return 0;

        bpf_for(i, 0, n) {
                /* no rechecking of i against ARRAY_SIZE(loop_data.n) */
                sum += loop_data.data[i];
        }

        return sum;
  }

The insn #14 is a sign-extenstion load which is related to 'int i'.
The insn #15 did a subreg comparision. Note that smin=0xffffffff80000000 and this caused later
insn #23 failed verification due to unbounded min value.

Actually insn #15 R1 smin range can be better. Before insn #15, we have
  R1_w=scalar(smin=0xffffffff80000000,smax=0x7fffffff)
With the above range, we know for R1, upper 32bit can only be 0xffffffff or 0.
Otherwise, the value range for R1 could be beyond [smin=0xffffffff80000000,smax=0x7fffffff].

After insn #15, for the true patch, we know smin32=0 and smax32=32. With the upper 32bit 0xffffffff,
then the corresponding value is [0xffffffff00000000, 0xffffffff00000020]. The range is
obviously beyond the original range [smin=0xffffffff80000000,smax=0x7fffffff] and the
range is not possible. So the upper 32bit must be 0, which implies smin = smin32 and
smax = smax32.

This patch fixed the issue by adding additional register deduction after 32-bit compare
insn. If the signed 32-bit register range is non-negative then 64-bit smin is
in range of [S32_MIN, S32_MAX], then the actual 64-bit smin/smax should be the same
as 32-bit smin32/smax32.

With this patch, iters/iter_arr_with_actual_elem_count succeeded with better register range:

from 15 to 20: R0=rdonly_mem(id=7,ref_obj_id=2,sz=4) R1_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=31,var_off=(0x0; 0x1f)) R6=scalar(id=1,smin=umin=smin32=umin32=1,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=scalar(id=9,smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff)) R8=scalar(id=9,smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff)) R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=3) refs=2

Signed-off-by: Yonghong Song <[email protected]>
Acked-by: Eduard Zingerman <[email protected]>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Jul 18, 2024
With latest llvm19, the selftest iters/iter_arr_with_actual_elem_count
failed with -mcpu=v4.

The following are the details:
  0: R1=ctx() R10=fp0
  ; int iter_arr_with_actual_elem_count(const void *ctx) @ iters.c:1420
  0: (b4) w7 = 0                        ; R7_w=0
  ; int i, n = loop_data.n, sum = 0; @ iters.c:1422
  1: (18) r1 = 0xffffc90000191478       ; R1_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144)
  3: (61) r6 = *(u32 *)(r1 +128)        ; R1_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144) R6_w=scalar(smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff))
  ; if (n > ARRAY_SIZE(loop_data.data)) @ iters.c:1424
  4: (26) if w6 > 0x20 goto pc+27       ; R6_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f))
  5: (bf) r8 = r10                      ; R8_w=fp0 R10=fp0
  6: (07) r8 += -8                      ; R8_w=fp-8
  ; bpf_for(i, 0, n) { @ iters.c:1427
  7: (bf) r1 = r8                       ; R1_w=fp-8 R8_w=fp-8
  8: (b4) w2 = 0                        ; R2_w=0
  9: (bc) w3 = w6                       ; R3_w=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R6_w=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f))
  10: (85) call bpf_iter_num_new#45179          ; R0=scalar() fp-8=iter_num(ref_id=2,state=active,depth=0) refs=2
  11: (bf) r1 = r8                      ; R1=fp-8 R8=fp-8 refs=2
  12: (85) call bpf_iter_num_next#45181 13: R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R6=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=0 R8=fp-8 R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=1) refs=2
  ; bpf_for(i, 0, n) { @ iters.c:1427
  13: (15) if r0 == 0x0 goto pc+2       ; R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) refs=2
  14: (81) r1 = *(s32 *)(r0 +0)         ; R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R1_w=scalar(smin=0xffffffff80000000,smax=0x7fffffff) refs=2
  15: (ae) if w1 < w6 goto pc+4 20: R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R1=scalar(smin=0xffffffff80000000,smax=smax32=umax32=31,umax=0xffffffff0000001f,smin32=0,var_off=(0x0; 0xffffffff0000001f)) R6=scalar(id=1,smin=umin=smin32=umin32=1,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=0 R8=fp-8 R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=1) refs=2
  ; sum += loop_data.data[i]; @ iters.c:1429
  20: (67) r1 <<= 2                     ; R1_w=scalar(smax=0x7ffffffc0000007c,umax=0xfffffffc0000007c,smin32=0,smax32=umax32=124,var_off=(0x0; 0xfffffffc0000007c)) refs=2
  21: (18) r2 = 0xffffc90000191478      ; R2_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144) refs=2
  23: (0f) r2 += r1
  math between map_value pointer and register with unbounded min value is not allowed

The source code:
  int iter_arr_with_actual_elem_count(const void *ctx)
  {
        int i, n = loop_data.n, sum = 0;

        if (n > ARRAY_SIZE(loop_data.data))
                return 0;

        bpf_for(i, 0, n) {
                /* no rechecking of i against ARRAY_SIZE(loop_data.n) */
                sum += loop_data.data[i];
        }

        return sum;
  }

The insn #14 is a sign-extenstion load which is related to 'int i'.
The insn #15 did a subreg comparision. Note that smin=0xffffffff80000000 and this caused later
insn #23 failed verification due to unbounded min value.

Actually insn #15 R1 smin range can be better. Before insn #15, we have
  R1_w=scalar(smin=0xffffffff80000000,smax=0x7fffffff)
With the above range, we know for R1, upper 32bit can only be 0xffffffff or 0.
Otherwise, the value range for R1 could be beyond [smin=0xffffffff80000000,smax=0x7fffffff].

After insn #15, for the true patch, we know smin32=0 and smax32=32. With the upper 32bit 0xffffffff,
then the corresponding value is [0xffffffff00000000, 0xffffffff00000020]. The range is
obviously beyond the original range [smin=0xffffffff80000000,smax=0x7fffffff] and the
range is not possible. So the upper 32bit must be 0, which implies smin = smin32 and
smax = smax32.

This patch fixed the issue by adding additional register deduction after 32-bit compare
insn. If the signed 32-bit register range is non-negative then 64-bit smin is
in range of [S32_MIN, S32_MAX], then the actual 64-bit smin/smax should be the same
as 32-bit smin32/smax32.

With this patch, iters/iter_arr_with_actual_elem_count succeeded with better register range:

from 15 to 20: R0=rdonly_mem(id=7,ref_obj_id=2,sz=4) R1_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=31,var_off=(0x0; 0x1f)) R6=scalar(id=1,smin=umin=smin32=umin32=1,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=scalar(id=9,smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff)) R8=scalar(id=9,smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff)) R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=3) refs=2

Acked-by: Eduard Zingerman <[email protected]>
Acked-by: Shung-Hsi Yu <[email protected]>
Signed-off-by: Yonghong Song <[email protected]>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Jul 18, 2024
With latest llvm19, the selftest iters/iter_arr_with_actual_elem_count
failed with -mcpu=v4.

The following are the details:
  0: R1=ctx() R10=fp0
  ; int iter_arr_with_actual_elem_count(const void *ctx) @ iters.c:1420
  0: (b4) w7 = 0                        ; R7_w=0
  ; int i, n = loop_data.n, sum = 0; @ iters.c:1422
  1: (18) r1 = 0xffffc90000191478       ; R1_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144)
  3: (61) r6 = *(u32 *)(r1 +128)        ; R1_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144) R6_w=scalar(smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff))
  ; if (n > ARRAY_SIZE(loop_data.data)) @ iters.c:1424
  4: (26) if w6 > 0x20 goto pc+27       ; R6_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f))
  5: (bf) r8 = r10                      ; R8_w=fp0 R10=fp0
  6: (07) r8 += -8                      ; R8_w=fp-8
  ; bpf_for(i, 0, n) { @ iters.c:1427
  7: (bf) r1 = r8                       ; R1_w=fp-8 R8_w=fp-8
  8: (b4) w2 = 0                        ; R2_w=0
  9: (bc) w3 = w6                       ; R3_w=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R6_w=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f))
  10: (85) call bpf_iter_num_new#45179          ; R0=scalar() fp-8=iter_num(ref_id=2,state=active,depth=0) refs=2
  11: (bf) r1 = r8                      ; R1=fp-8 R8=fp-8 refs=2
  12: (85) call bpf_iter_num_next#45181 13: R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R6=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=0 R8=fp-8 R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=1) refs=2
  ; bpf_for(i, 0, n) { @ iters.c:1427
  13: (15) if r0 == 0x0 goto pc+2       ; R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) refs=2
  14: (81) r1 = *(s32 *)(r0 +0)         ; R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R1_w=scalar(smin=0xffffffff80000000,smax=0x7fffffff) refs=2
  15: (ae) if w1 < w6 goto pc+4 20: R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R1=scalar(smin=0xffffffff80000000,smax=smax32=umax32=31,umax=0xffffffff0000001f,smin32=0,var_off=(0x0; 0xffffffff0000001f)) R6=scalar(id=1,smin=umin=smin32=umin32=1,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=0 R8=fp-8 R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=1) refs=2
  ; sum += loop_data.data[i]; @ iters.c:1429
  20: (67) r1 <<= 2                     ; R1_w=scalar(smax=0x7ffffffc0000007c,umax=0xfffffffc0000007c,smin32=0,smax32=umax32=124,var_off=(0x0; 0xfffffffc0000007c)) refs=2
  21: (18) r2 = 0xffffc90000191478      ; R2_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144) refs=2
  23: (0f) r2 += r1
  math between map_value pointer and register with unbounded min value is not allowed

The source code:
  int iter_arr_with_actual_elem_count(const void *ctx)
  {
        int i, n = loop_data.n, sum = 0;

        if (n > ARRAY_SIZE(loop_data.data))
                return 0;

        bpf_for(i, 0, n) {
                /* no rechecking of i against ARRAY_SIZE(loop_data.n) */
                sum += loop_data.data[i];
        }

        return sum;
  }

The insn #14 is a sign-extenstion load which is related to 'int i'.
The insn #15 did a subreg comparision. Note that smin=0xffffffff80000000 and this caused later
insn #23 failed verification due to unbounded min value.

Actually insn #15 R1 smin range can be better. Before insn #15, we have
  R1_w=scalar(smin=0xffffffff80000000,smax=0x7fffffff)
With the above range, we know for R1, upper 32bit can only be 0xffffffff or 0.
Otherwise, the value range for R1 could be beyond [smin=0xffffffff80000000,smax=0x7fffffff].

After insn #15, for the true patch, we know smin32=0 and smax32=32. With the upper 32bit 0xffffffff,
then the corresponding value is [0xffffffff00000000, 0xffffffff00000020]. The range is
obviously beyond the original range [smin=0xffffffff80000000,smax=0x7fffffff] and the
range is not possible. So the upper 32bit must be 0, which implies smin = smin32 and
smax = smax32.

This patch fixed the issue by adding additional register deduction after 32-bit compare
insn. If the signed 32-bit register range is non-negative then 64-bit smin is
in range of [S32_MIN, S32_MAX], then the actual 64-bit smin/smax should be the same
as 32-bit smin32/smax32.

With this patch, iters/iter_arr_with_actual_elem_count succeeded with better register range:

from 15 to 20: R0=rdonly_mem(id=7,ref_obj_id=2,sz=4) R1_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=31,var_off=(0x0; 0x1f)) R6=scalar(id=1,smin=umin=smin32=umin32=1,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=scalar(id=9,smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff)) R8=scalar(id=9,smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff)) R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=3) refs=2

Acked-by: Eduard Zingerman <[email protected]>
Acked-by: Shung-Hsi Yu <[email protected]>
Signed-off-by: Yonghong Song <[email protected]>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Jul 19, 2024
With latest llvm19, the selftest iters/iter_arr_with_actual_elem_count
failed with -mcpu=v4.

The following are the details:
  0: R1=ctx() R10=fp0
  ; int iter_arr_with_actual_elem_count(const void *ctx) @ iters.c:1420
  0: (b4) w7 = 0                        ; R7_w=0
  ; int i, n = loop_data.n, sum = 0; @ iters.c:1422
  1: (18) r1 = 0xffffc90000191478       ; R1_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144)
  3: (61) r6 = *(u32 *)(r1 +128)        ; R1_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144) R6_w=scalar(smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff))
  ; if (n > ARRAY_SIZE(loop_data.data)) @ iters.c:1424
  4: (26) if w6 > 0x20 goto pc+27       ; R6_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f))
  5: (bf) r8 = r10                      ; R8_w=fp0 R10=fp0
  6: (07) r8 += -8                      ; R8_w=fp-8
  ; bpf_for(i, 0, n) { @ iters.c:1427
  7: (bf) r1 = r8                       ; R1_w=fp-8 R8_w=fp-8
  8: (b4) w2 = 0                        ; R2_w=0
  9: (bc) w3 = w6                       ; R3_w=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R6_w=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f))
  10: (85) call bpf_iter_num_new#45179          ; R0=scalar() fp-8=iter_num(ref_id=2,state=active,depth=0) refs=2
  11: (bf) r1 = r8                      ; R1=fp-8 R8=fp-8 refs=2
  12: (85) call bpf_iter_num_next#45181 13: R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R6=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=0 R8=fp-8 R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=1) refs=2
  ; bpf_for(i, 0, n) { @ iters.c:1427
  13: (15) if r0 == 0x0 goto pc+2       ; R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) refs=2
  14: (81) r1 = *(s32 *)(r0 +0)         ; R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R1_w=scalar(smin=0xffffffff80000000,smax=0x7fffffff) refs=2
  15: (ae) if w1 < w6 goto pc+4 20: R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R1=scalar(smin=0xffffffff80000000,smax=smax32=umax32=31,umax=0xffffffff0000001f,smin32=0,var_off=(0x0; 0xffffffff0000001f)) R6=scalar(id=1,smin=umin=smin32=umin32=1,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=0 R8=fp-8 R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=1) refs=2
  ; sum += loop_data.data[i]; @ iters.c:1429
  20: (67) r1 <<= 2                     ; R1_w=scalar(smax=0x7ffffffc0000007c,umax=0xfffffffc0000007c,smin32=0,smax32=umax32=124,var_off=(0x0; 0xfffffffc0000007c)) refs=2
  21: (18) r2 = 0xffffc90000191478      ; R2_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144) refs=2
  23: (0f) r2 += r1
  math between map_value pointer and register with unbounded min value is not allowed

The source code:
  int iter_arr_with_actual_elem_count(const void *ctx)
  {
        int i, n = loop_data.n, sum = 0;

        if (n > ARRAY_SIZE(loop_data.data))
                return 0;

        bpf_for(i, 0, n) {
                /* no rechecking of i against ARRAY_SIZE(loop_data.n) */
                sum += loop_data.data[i];
        }

        return sum;
  }

The insn #14 is a sign-extenstion load which is related to 'int i'.
The insn #15 did a subreg comparision. Note that smin=0xffffffff80000000 and this caused later
insn #23 failed verification due to unbounded min value.

Actually insn #15 R1 smin range can be better. Before insn #15, we have
  R1_w=scalar(smin=0xffffffff80000000,smax=0x7fffffff)
With the above range, we know for R1, upper 32bit can only be 0xffffffff or 0.
Otherwise, the value range for R1 could be beyond [smin=0xffffffff80000000,smax=0x7fffffff].

After insn #15, for the true patch, we know smin32=0 and smax32=32. With the upper 32bit 0xffffffff,
then the corresponding value is [0xffffffff00000000, 0xffffffff00000020]. The range is
obviously beyond the original range [smin=0xffffffff80000000,smax=0x7fffffff] and the
range is not possible. So the upper 32bit must be 0, which implies smin = smin32 and
smax = smax32.

This patch fixed the issue by adding additional register deduction after 32-bit compare
insn. If the signed 32-bit register range is non-negative then 64-bit smin is
in range of [S32_MIN, S32_MAX], then the actual 64-bit smin/smax should be the same
as 32-bit smin32/smax32.

With this patch, iters/iter_arr_with_actual_elem_count succeeded with better register range:

from 15 to 20: R0=rdonly_mem(id=7,ref_obj_id=2,sz=4) R1_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=31,var_off=(0x0; 0x1f)) R6=scalar(id=1,smin=umin=smin32=umin32=1,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=scalar(id=9,smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff)) R8=scalar(id=9,smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff)) R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=3) refs=2

Acked-by: Eduard Zingerman <[email protected]>
Acked-by: Shung-Hsi Yu <[email protected]>
Signed-off-by: Yonghong Song <[email protected]>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Jul 19, 2024
With latest llvm19, the selftest iters/iter_arr_with_actual_elem_count
failed with -mcpu=v4.

The following are the details:
  0: R1=ctx() R10=fp0
  ; int iter_arr_with_actual_elem_count(const void *ctx) @ iters.c:1420
  0: (b4) w7 = 0                        ; R7_w=0
  ; int i, n = loop_data.n, sum = 0; @ iters.c:1422
  1: (18) r1 = 0xffffc90000191478       ; R1_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144)
  3: (61) r6 = *(u32 *)(r1 +128)        ; R1_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144) R6_w=scalar(smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff))
  ; if (n > ARRAY_SIZE(loop_data.data)) @ iters.c:1424
  4: (26) if w6 > 0x20 goto pc+27       ; R6_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f))
  5: (bf) r8 = r10                      ; R8_w=fp0 R10=fp0
  6: (07) r8 += -8                      ; R8_w=fp-8
  ; bpf_for(i, 0, n) { @ iters.c:1427
  7: (bf) r1 = r8                       ; R1_w=fp-8 R8_w=fp-8
  8: (b4) w2 = 0                        ; R2_w=0
  9: (bc) w3 = w6                       ; R3_w=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R6_w=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f))
  10: (85) call bpf_iter_num_new#45179          ; R0=scalar() fp-8=iter_num(ref_id=2,state=active,depth=0) refs=2
  11: (bf) r1 = r8                      ; R1=fp-8 R8=fp-8 refs=2
  12: (85) call bpf_iter_num_next#45181 13: R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R6=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=0 R8=fp-8 R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=1) refs=2
  ; bpf_for(i, 0, n) { @ iters.c:1427
  13: (15) if r0 == 0x0 goto pc+2       ; R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) refs=2
  14: (81) r1 = *(s32 *)(r0 +0)         ; R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R1_w=scalar(smin=0xffffffff80000000,smax=0x7fffffff) refs=2
  15: (ae) if w1 < w6 goto pc+4 20: R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R1=scalar(smin=0xffffffff80000000,smax=smax32=umax32=31,umax=0xffffffff0000001f,smin32=0,var_off=(0x0; 0xffffffff0000001f)) R6=scalar(id=1,smin=umin=smin32=umin32=1,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=0 R8=fp-8 R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=1) refs=2
  ; sum += loop_data.data[i]; @ iters.c:1429
  20: (67) r1 <<= 2                     ; R1_w=scalar(smax=0x7ffffffc0000007c,umax=0xfffffffc0000007c,smin32=0,smax32=umax32=124,var_off=(0x0; 0xfffffffc0000007c)) refs=2
  21: (18) r2 = 0xffffc90000191478      ; R2_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144) refs=2
  23: (0f) r2 += r1
  math between map_value pointer and register with unbounded min value is not allowed

The source code:
  int iter_arr_with_actual_elem_count(const void *ctx)
  {
        int i, n = loop_data.n, sum = 0;

        if (n > ARRAY_SIZE(loop_data.data))
                return 0;

        bpf_for(i, 0, n) {
                /* no rechecking of i against ARRAY_SIZE(loop_data.n) */
                sum += loop_data.data[i];
        }

        return sum;
  }

The insn #14 is a sign-extenstion load which is related to 'int i'.
The insn #15 did a subreg comparision. Note that smin=0xffffffff80000000 and this caused later
insn #23 failed verification due to unbounded min value.

Actually insn #15 R1 smin range can be better. Before insn #15, we have
  R1_w=scalar(smin=0xffffffff80000000,smax=0x7fffffff)
With the above range, we know for R1, upper 32bit can only be 0xffffffff or 0.
Otherwise, the value range for R1 could be beyond [smin=0xffffffff80000000,smax=0x7fffffff].

After insn #15, for the true patch, we know smin32=0 and smax32=32. With the upper 32bit 0xffffffff,
then the corresponding value is [0xffffffff00000000, 0xffffffff00000020]. The range is
obviously beyond the original range [smin=0xffffffff80000000,smax=0x7fffffff] and the
range is not possible. So the upper 32bit must be 0, which implies smin = smin32 and
smax = smax32.

This patch fixed the issue by adding additional register deduction after 32-bit compare
insn. If the signed 32-bit register range is non-negative then 64-bit smin is
in range of [S32_MIN, S32_MAX], then the actual 64-bit smin/smax should be the same
as 32-bit smin32/smax32.

With this patch, iters/iter_arr_with_actual_elem_count succeeded with better register range:

from 15 to 20: R0=rdonly_mem(id=7,ref_obj_id=2,sz=4) R1_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=31,var_off=(0x0; 0x1f)) R6=scalar(id=1,smin=umin=smin32=umin32=1,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=scalar(id=9,smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff)) R8=scalar(id=9,smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff)) R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=3) refs=2

Acked-by: Eduard Zingerman <[email protected]>
Acked-by: Shung-Hsi Yu <[email protected]>
Signed-off-by: Yonghong Song <[email protected]>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Jul 23, 2024
With latest llvm19, the selftest iters/iter_arr_with_actual_elem_count
failed with -mcpu=v4.

The following are the details:
  0: R1=ctx() R10=fp0
  ; int iter_arr_with_actual_elem_count(const void *ctx) @ iters.c:1420
  0: (b4) w7 = 0                        ; R7_w=0
  ; int i, n = loop_data.n, sum = 0; @ iters.c:1422
  1: (18) r1 = 0xffffc90000191478       ; R1_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144)
  3: (61) r6 = *(u32 *)(r1 +128)        ; R1_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144) R6_w=scalar(smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff))
  ; if (n > ARRAY_SIZE(loop_data.data)) @ iters.c:1424
  4: (26) if w6 > 0x20 goto pc+27       ; R6_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f))
  5: (bf) r8 = r10                      ; R8_w=fp0 R10=fp0
  6: (07) r8 += -8                      ; R8_w=fp-8
  ; bpf_for(i, 0, n) { @ iters.c:1427
  7: (bf) r1 = r8                       ; R1_w=fp-8 R8_w=fp-8
  8: (b4) w2 = 0                        ; R2_w=0
  9: (bc) w3 = w6                       ; R3_w=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R6_w=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f))
  10: (85) call bpf_iter_num_new#45179          ; R0=scalar() fp-8=iter_num(ref_id=2,state=active,depth=0) refs=2
  11: (bf) r1 = r8                      ; R1=fp-8 R8=fp-8 refs=2
  12: (85) call bpf_iter_num_next#45181 13: R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R6=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=0 R8=fp-8 R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=1) refs=2
  ; bpf_for(i, 0, n) { @ iters.c:1427
  13: (15) if r0 == 0x0 goto pc+2       ; R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) refs=2
  14: (81) r1 = *(s32 *)(r0 +0)         ; R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R1_w=scalar(smin=0xffffffff80000000,smax=0x7fffffff) refs=2
  15: (ae) if w1 < w6 goto pc+4 20: R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R1=scalar(smin=0xffffffff80000000,smax=smax32=umax32=31,umax=0xffffffff0000001f,smin32=0,var_off=(0x0; 0xffffffff0000001f)) R6=scalar(id=1,smin=umin=smin32=umin32=1,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=0 R8=fp-8 R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=1) refs=2
  ; sum += loop_data.data[i]; @ iters.c:1429
  20: (67) r1 <<= 2                     ; R1_w=scalar(smax=0x7ffffffc0000007c,umax=0xfffffffc0000007c,smin32=0,smax32=umax32=124,var_off=(0x0; 0xfffffffc0000007c)) refs=2
  21: (18) r2 = 0xffffc90000191478      ; R2_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144) refs=2
  23: (0f) r2 += r1
  math between map_value pointer and register with unbounded min value is not allowed

The source code:
  int iter_arr_with_actual_elem_count(const void *ctx)
  {
        int i, n = loop_data.n, sum = 0;

        if (n > ARRAY_SIZE(loop_data.data))
                return 0;

        bpf_for(i, 0, n) {
                /* no rechecking of i against ARRAY_SIZE(loop_data.n) */
                sum += loop_data.data[i];
        }

        return sum;
  }

The insn #14 is a sign-extenstion load which is related to 'int i'.
The insn #15 did a subreg comparision. Note that smin=0xffffffff80000000 and this caused later
insn #23 failed verification due to unbounded min value.

Actually insn #15 R1 smin range can be better. Before insn #15, we have
  R1_w=scalar(smin=0xffffffff80000000,smax=0x7fffffff)
With the above range, we know for R1, upper 32bit can only be 0xffffffff or 0.
Otherwise, the value range for R1 could be beyond [smin=0xffffffff80000000,smax=0x7fffffff].

After insn #15, for the true patch, we know smin32=0 and smax32=32. With the upper 32bit 0xffffffff,
then the corresponding value is [0xffffffff00000000, 0xffffffff00000020]. The range is
obviously beyond the original range [smin=0xffffffff80000000,smax=0x7fffffff] and the
range is not possible. So the upper 32bit must be 0, which implies smin = smin32 and
smax = smax32.

This patch fixed the issue by adding additional register deduction after 32-bit compare
insn. If the signed 32-bit register range is non-negative then 64-bit smin is
in range of [S32_MIN, S32_MAX], then the actual 64-bit smin/smax should be the same
as 32-bit smin32/smax32.

With this patch, iters/iter_arr_with_actual_elem_count succeeded with better register range:

from 15 to 20: R0=rdonly_mem(id=7,ref_obj_id=2,sz=4) R1_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=31,var_off=(0x0; 0x1f)) R6=scalar(id=1,smin=umin=smin32=umin32=1,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=scalar(id=9,smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff)) R8=scalar(id=9,smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff)) R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=3) refs=2

Acked-by: Eduard Zingerman <[email protected]>
Acked-by: Shung-Hsi Yu <[email protected]>
Signed-off-by: Yonghong Song <[email protected]>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Jul 23, 2024
With latest llvm19, the selftest iters/iter_arr_with_actual_elem_count
failed with -mcpu=v4.

The following are the details:
  0: R1=ctx() R10=fp0
  ; int iter_arr_with_actual_elem_count(const void *ctx) @ iters.c:1420
  0: (b4) w7 = 0                        ; R7_w=0
  ; int i, n = loop_data.n, sum = 0; @ iters.c:1422
  1: (18) r1 = 0xffffc90000191478       ; R1_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144)
  3: (61) r6 = *(u32 *)(r1 +128)        ; R1_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144) R6_w=scalar(smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff))
  ; if (n > ARRAY_SIZE(loop_data.data)) @ iters.c:1424
  4: (26) if w6 > 0x20 goto pc+27       ; R6_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f))
  5: (bf) r8 = r10                      ; R8_w=fp0 R10=fp0
  6: (07) r8 += -8                      ; R8_w=fp-8
  ; bpf_for(i, 0, n) { @ iters.c:1427
  7: (bf) r1 = r8                       ; R1_w=fp-8 R8_w=fp-8
  8: (b4) w2 = 0                        ; R2_w=0
  9: (bc) w3 = w6                       ; R3_w=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R6_w=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f))
  10: (85) call bpf_iter_num_new#45179          ; R0=scalar() fp-8=iter_num(ref_id=2,state=active,depth=0) refs=2
  11: (bf) r1 = r8                      ; R1=fp-8 R8=fp-8 refs=2
  12: (85) call bpf_iter_num_next#45181 13: R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R6=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=0 R8=fp-8 R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=1) refs=2
  ; bpf_for(i, 0, n) { @ iters.c:1427
  13: (15) if r0 == 0x0 goto pc+2       ; R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) refs=2
  14: (81) r1 = *(s32 *)(r0 +0)         ; R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R1_w=scalar(smin=0xffffffff80000000,smax=0x7fffffff) refs=2
  15: (ae) if w1 < w6 goto pc+4 20: R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R1=scalar(smin=0xffffffff80000000,smax=smax32=umax32=31,umax=0xffffffff0000001f,smin32=0,var_off=(0x0; 0xffffffff0000001f)) R6=scalar(id=1,smin=umin=smin32=umin32=1,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=0 R8=fp-8 R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=1) refs=2
  ; sum += loop_data.data[i]; @ iters.c:1429
  20: (67) r1 <<= 2                     ; R1_w=scalar(smax=0x7ffffffc0000007c,umax=0xfffffffc0000007c,smin32=0,smax32=umax32=124,var_off=(0x0; 0xfffffffc0000007c)) refs=2
  21: (18) r2 = 0xffffc90000191478      ; R2_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144) refs=2
  23: (0f) r2 += r1
  math between map_value pointer and register with unbounded min value is not allowed

The source code:
  int iter_arr_with_actual_elem_count(const void *ctx)
  {
        int i, n = loop_data.n, sum = 0;

        if (n > ARRAY_SIZE(loop_data.data))
                return 0;

        bpf_for(i, 0, n) {
                /* no rechecking of i against ARRAY_SIZE(loop_data.n) */
                sum += loop_data.data[i];
        }

        return sum;
  }

The insn #14 is a sign-extenstion load which is related to 'int i'.
The insn #15 did a subreg comparision. Note that smin=0xffffffff80000000 and this caused later
insn #23 failed verification due to unbounded min value.

Actually insn #15 R1 smin range can be better. Before insn #15, we have
  R1_w=scalar(smin=0xffffffff80000000,smax=0x7fffffff)
With the above range, we know for R1, upper 32bit can only be 0xffffffff or 0.
Otherwise, the value range for R1 could be beyond [smin=0xffffffff80000000,smax=0x7fffffff].

After insn #15, for the true patch, we know smin32=0 and smax32=32. With the upper 32bit 0xffffffff,
then the corresponding value is [0xffffffff00000000, 0xffffffff00000020]. The range is
obviously beyond the original range [smin=0xffffffff80000000,smax=0x7fffffff] and the
range is not possible. So the upper 32bit must be 0, which implies smin = smin32 and
smax = smax32.

This patch fixed the issue by adding additional register deduction after 32-bit compare
insn. If the signed 32-bit register range is non-negative then 64-bit smin is
in range of [S32_MIN, S32_MAX], then the actual 64-bit smin/smax should be the same
as 32-bit smin32/smax32.

With this patch, iters/iter_arr_with_actual_elem_count succeeded with better register range:

from 15 to 20: R0=rdonly_mem(id=7,ref_obj_id=2,sz=4) R1_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=31,var_off=(0x0; 0x1f)) R6=scalar(id=1,smin=umin=smin32=umin32=1,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=scalar(id=9,smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff)) R8=scalar(id=9,smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff)) R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=3) refs=2

Acked-by: Eduard Zingerman <[email protected]>
Acked-by: Shung-Hsi Yu <[email protected]>
Signed-off-by: Yonghong Song <[email protected]>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Jul 23, 2024
With latest llvm19, the selftest iters/iter_arr_with_actual_elem_count
failed with -mcpu=v4.

The following are the details:
  0: R1=ctx() R10=fp0
  ; int iter_arr_with_actual_elem_count(const void *ctx) @ iters.c:1420
  0: (b4) w7 = 0                        ; R7_w=0
  ; int i, n = loop_data.n, sum = 0; @ iters.c:1422
  1: (18) r1 = 0xffffc90000191478       ; R1_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144)
  3: (61) r6 = *(u32 *)(r1 +128)        ; R1_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144) R6_w=scalar(smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff))
  ; if (n > ARRAY_SIZE(loop_data.data)) @ iters.c:1424
  4: (26) if w6 > 0x20 goto pc+27       ; R6_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f))
  5: (bf) r8 = r10                      ; R8_w=fp0 R10=fp0
  6: (07) r8 += -8                      ; R8_w=fp-8
  ; bpf_for(i, 0, n) { @ iters.c:1427
  7: (bf) r1 = r8                       ; R1_w=fp-8 R8_w=fp-8
  8: (b4) w2 = 0                        ; R2_w=0
  9: (bc) w3 = w6                       ; R3_w=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R6_w=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f))
  10: (85) call bpf_iter_num_new#45179          ; R0=scalar() fp-8=iter_num(ref_id=2,state=active,depth=0) refs=2
  11: (bf) r1 = r8                      ; R1=fp-8 R8=fp-8 refs=2
  12: (85) call bpf_iter_num_next#45181 13: R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R6=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=0 R8=fp-8 R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=1) refs=2
  ; bpf_for(i, 0, n) { @ iters.c:1427
  13: (15) if r0 == 0x0 goto pc+2       ; R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) refs=2
  14: (81) r1 = *(s32 *)(r0 +0)         ; R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R1_w=scalar(smin=0xffffffff80000000,smax=0x7fffffff) refs=2
  15: (ae) if w1 < w6 goto pc+4 20: R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R1=scalar(smin=0xffffffff80000000,smax=smax32=umax32=31,umax=0xffffffff0000001f,smin32=0,var_off=(0x0; 0xffffffff0000001f)) R6=scalar(id=1,smin=umin=smin32=umin32=1,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=0 R8=fp-8 R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=1) refs=2
  ; sum += loop_data.data[i]; @ iters.c:1429
  20: (67) r1 <<= 2                     ; R1_w=scalar(smax=0x7ffffffc0000007c,umax=0xfffffffc0000007c,smin32=0,smax32=umax32=124,var_off=(0x0; 0xfffffffc0000007c)) refs=2
  21: (18) r2 = 0xffffc90000191478      ; R2_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144) refs=2
  23: (0f) r2 += r1
  math between map_value pointer and register with unbounded min value is not allowed

The source code:
  int iter_arr_with_actual_elem_count(const void *ctx)
  {
        int i, n = loop_data.n, sum = 0;

        if (n > ARRAY_SIZE(loop_data.data))
                return 0;

        bpf_for(i, 0, n) {
                /* no rechecking of i against ARRAY_SIZE(loop_data.n) */
                sum += loop_data.data[i];
        }

        return sum;
  }

The insn #14 is a sign-extenstion load which is related to 'int i'.
The insn #15 did a subreg comparision. Note that smin=0xffffffff80000000 and this caused later
insn #23 failed verification due to unbounded min value.

Actually insn #15 R1 smin range can be better. Before insn #15, we have
  R1_w=scalar(smin=0xffffffff80000000,smax=0x7fffffff)
With the above range, we know for R1, upper 32bit can only be 0xffffffff or 0.
Otherwise, the value range for R1 could be beyond [smin=0xffffffff80000000,smax=0x7fffffff].

After insn #15, for the true patch, we know smin32=0 and smax32=32. With the upper 32bit 0xffffffff,
then the corresponding value is [0xffffffff00000000, 0xffffffff00000020]. The range is
obviously beyond the original range [smin=0xffffffff80000000,smax=0x7fffffff] and the
range is not possible. So the upper 32bit must be 0, which implies smin = smin32 and
smax = smax32.

This patch fixed the issue by adding additional register deduction after 32-bit compare
insn. If the signed 32-bit register range is non-negative then 64-bit smin is
in range of [S32_MIN, S32_MAX], then the actual 64-bit smin/smax should be the same
as 32-bit smin32/smax32.

With this patch, iters/iter_arr_with_actual_elem_count succeeded with better register range:

from 15 to 20: R0=rdonly_mem(id=7,ref_obj_id=2,sz=4) R1_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=31,var_off=(0x0; 0x1f)) R6=scalar(id=1,smin=umin=smin32=umin32=1,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=scalar(id=9,smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff)) R8=scalar(id=9,smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff)) R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=3) refs=2

Acked-by: Eduard Zingerman <[email protected]>
Acked-by: Shung-Hsi Yu <[email protected]>
Signed-off-by: Yonghong Song <[email protected]>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Jul 23, 2024
With latest llvm19, the selftest iters/iter_arr_with_actual_elem_count
failed with -mcpu=v4.

The following are the details:
  0: R1=ctx() R10=fp0
  ; int iter_arr_with_actual_elem_count(const void *ctx) @ iters.c:1420
  0: (b4) w7 = 0                        ; R7_w=0
  ; int i, n = loop_data.n, sum = 0; @ iters.c:1422
  1: (18) r1 = 0xffffc90000191478       ; R1_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144)
  3: (61) r6 = *(u32 *)(r1 +128)        ; R1_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144) R6_w=scalar(smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff))
  ; if (n > ARRAY_SIZE(loop_data.data)) @ iters.c:1424
  4: (26) if w6 > 0x20 goto pc+27       ; R6_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f))
  5: (bf) r8 = r10                      ; R8_w=fp0 R10=fp0
  6: (07) r8 += -8                      ; R8_w=fp-8
  ; bpf_for(i, 0, n) { @ iters.c:1427
  7: (bf) r1 = r8                       ; R1_w=fp-8 R8_w=fp-8
  8: (b4) w2 = 0                        ; R2_w=0
  9: (bc) w3 = w6                       ; R3_w=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R6_w=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f))
  10: (85) call bpf_iter_num_new#45179          ; R0=scalar() fp-8=iter_num(ref_id=2,state=active,depth=0) refs=2
  11: (bf) r1 = r8                      ; R1=fp-8 R8=fp-8 refs=2
  12: (85) call bpf_iter_num_next#45181 13: R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R6=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=0 R8=fp-8 R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=1) refs=2
  ; bpf_for(i, 0, n) { @ iters.c:1427
  13: (15) if r0 == 0x0 goto pc+2       ; R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) refs=2
  14: (81) r1 = *(s32 *)(r0 +0)         ; R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R1_w=scalar(smin=0xffffffff80000000,smax=0x7fffffff) refs=2
  15: (ae) if w1 < w6 goto pc+4 20: R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R1=scalar(smin=0xffffffff80000000,smax=smax32=umax32=31,umax=0xffffffff0000001f,smin32=0,var_off=(0x0; 0xffffffff0000001f)) R6=scalar(id=1,smin=umin=smin32=umin32=1,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=0 R8=fp-8 R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=1) refs=2
  ; sum += loop_data.data[i]; @ iters.c:1429
  20: (67) r1 <<= 2                     ; R1_w=scalar(smax=0x7ffffffc0000007c,umax=0xfffffffc0000007c,smin32=0,smax32=umax32=124,var_off=(0x0; 0xfffffffc0000007c)) refs=2
  21: (18) r2 = 0xffffc90000191478      ; R2_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144) refs=2
  23: (0f) r2 += r1
  math between map_value pointer and register with unbounded min value is not allowed

The source code:
  int iter_arr_with_actual_elem_count(const void *ctx)
  {
        int i, n = loop_data.n, sum = 0;

        if (n > ARRAY_SIZE(loop_data.data))
                return 0;

        bpf_for(i, 0, n) {
                /* no rechecking of i against ARRAY_SIZE(loop_data.n) */
                sum += loop_data.data[i];
        }

        return sum;
  }

The insn #14 is a sign-extenstion load which is related to 'int i'.
The insn #15 did a subreg comparision. Note that smin=0xffffffff80000000 and this caused later
insn #23 failed verification due to unbounded min value.

Actually insn #15 R1 smin range can be better. Before insn #15, we have
  R1_w=scalar(smin=0xffffffff80000000,smax=0x7fffffff)
With the above range, we know for R1, upper 32bit can only be 0xffffffff or 0.
Otherwise, the value range for R1 could be beyond [smin=0xffffffff80000000,smax=0x7fffffff].

After insn #15, for the true patch, we know smin32=0 and smax32=32. With the upper 32bit 0xffffffff,
then the corresponding value is [0xffffffff00000000, 0xffffffff00000020]. The range is
obviously beyond the original range [smin=0xffffffff80000000,smax=0x7fffffff] and the
range is not possible. So the upper 32bit must be 0, which implies smin = smin32 and
smax = smax32.

This patch fixed the issue by adding additional register deduction after 32-bit compare
insn. If the signed 32-bit register range is non-negative then 64-bit smin is
in range of [S32_MIN, S32_MAX], then the actual 64-bit smin/smax should be the same
as 32-bit smin32/smax32.

With this patch, iters/iter_arr_with_actual_elem_count succeeded with better register range:

from 15 to 20: R0=rdonly_mem(id=7,ref_obj_id=2,sz=4) R1_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=31,var_off=(0x0; 0x1f)) R6=scalar(id=1,smin=umin=smin32=umin32=1,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=scalar(id=9,smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff)) R8=scalar(id=9,smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff)) R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=3) refs=2

Acked-by: Eduard Zingerman <[email protected]>
Acked-by: Shung-Hsi Yu <[email protected]>
Signed-off-by: Yonghong Song <[email protected]>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Jul 23, 2024
With latest llvm19, the selftest iters/iter_arr_with_actual_elem_count
failed with -mcpu=v4.

The following are the details:
  0: R1=ctx() R10=fp0
  ; int iter_arr_with_actual_elem_count(const void *ctx) @ iters.c:1420
  0: (b4) w7 = 0                        ; R7_w=0
  ; int i, n = loop_data.n, sum = 0; @ iters.c:1422
  1: (18) r1 = 0xffffc90000191478       ; R1_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144)
  3: (61) r6 = *(u32 *)(r1 +128)        ; R1_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144) R6_w=scalar(smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff))
  ; if (n > ARRAY_SIZE(loop_data.data)) @ iters.c:1424
  4: (26) if w6 > 0x20 goto pc+27       ; R6_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f))
  5: (bf) r8 = r10                      ; R8_w=fp0 R10=fp0
  6: (07) r8 += -8                      ; R8_w=fp-8
  ; bpf_for(i, 0, n) { @ iters.c:1427
  7: (bf) r1 = r8                       ; R1_w=fp-8 R8_w=fp-8
  8: (b4) w2 = 0                        ; R2_w=0
  9: (bc) w3 = w6                       ; R3_w=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R6_w=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f))
  10: (85) call bpf_iter_num_new#45179          ; R0=scalar() fp-8=iter_num(ref_id=2,state=active,depth=0) refs=2
  11: (bf) r1 = r8                      ; R1=fp-8 R8=fp-8 refs=2
  12: (85) call bpf_iter_num_next#45181 13: R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R6=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=0 R8=fp-8 R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=1) refs=2
  ; bpf_for(i, 0, n) { @ iters.c:1427
  13: (15) if r0 == 0x0 goto pc+2       ; R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) refs=2
  14: (81) r1 = *(s32 *)(r0 +0)         ; R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R1_w=scalar(smin=0xffffffff80000000,smax=0x7fffffff) refs=2
  15: (ae) if w1 < w6 goto pc+4 20: R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R1=scalar(smin=0xffffffff80000000,smax=smax32=umax32=31,umax=0xffffffff0000001f,smin32=0,var_off=(0x0; 0xffffffff0000001f)) R6=scalar(id=1,smin=umin=smin32=umin32=1,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=0 R8=fp-8 R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=1) refs=2
  ; sum += loop_data.data[i]; @ iters.c:1429
  20: (67) r1 <<= 2                     ; R1_w=scalar(smax=0x7ffffffc0000007c,umax=0xfffffffc0000007c,smin32=0,smax32=umax32=124,var_off=(0x0; 0xfffffffc0000007c)) refs=2
  21: (18) r2 = 0xffffc90000191478      ; R2_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144) refs=2
  23: (0f) r2 += r1
  math between map_value pointer and register with unbounded min value is not allowed

The source code:
  int iter_arr_with_actual_elem_count(const void *ctx)
  {
        int i, n = loop_data.n, sum = 0;

        if (n > ARRAY_SIZE(loop_data.data))
                return 0;

        bpf_for(i, 0, n) {
                /* no rechecking of i against ARRAY_SIZE(loop_data.n) */
                sum += loop_data.data[i];
        }

        return sum;
  }

The insn #14 is a sign-extenstion load which is related to 'int i'.
The insn #15 did a subreg comparision. Note that smin=0xffffffff80000000 and this caused later
insn #23 failed verification due to unbounded min value.

Actually insn #15 R1 smin range can be better. Before insn #15, we have
  R1_w=scalar(smin=0xffffffff80000000,smax=0x7fffffff)
With the above range, we know for R1, upper 32bit can only be 0xffffffff or 0.
Otherwise, the value range for R1 could be beyond [smin=0xffffffff80000000,smax=0x7fffffff].

After insn #15, for the true patch, we know smin32=0 and smax32=32. With the upper 32bit 0xffffffff,
then the corresponding value is [0xffffffff00000000, 0xffffffff00000020]. The range is
obviously beyond the original range [smin=0xffffffff80000000,smax=0x7fffffff] and the
range is not possible. So the upper 32bit must be 0, which implies smin = smin32 and
smax = smax32.

This patch fixed the issue by adding additional register deduction after 32-bit compare
insn. If the signed 32-bit register range is non-negative then 64-bit smin is
in range of [S32_MIN, S32_MAX], then the actual 64-bit smin/smax should be the same
as 32-bit smin32/smax32.

With this patch, iters/iter_arr_with_actual_elem_count succeeded with better register range:

from 15 to 20: R0=rdonly_mem(id=7,ref_obj_id=2,sz=4) R1_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=31,var_off=(0x0; 0x1f)) R6=scalar(id=1,smin=umin=smin32=umin32=1,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=scalar(id=9,smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff)) R8=scalar(id=9,smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff)) R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=3) refs=2

Acked-by: Eduard Zingerman <[email protected]>
Acked-by: Shung-Hsi Yu <[email protected]>
Signed-off-by: Yonghong Song <[email protected]>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Jul 23, 2024
With latest llvm19, the selftest iters/iter_arr_with_actual_elem_count
failed with -mcpu=v4.

The following are the details:
  0: R1=ctx() R10=fp0
  ; int iter_arr_with_actual_elem_count(const void *ctx) @ iters.c:1420
  0: (b4) w7 = 0                        ; R7_w=0
  ; int i, n = loop_data.n, sum = 0; @ iters.c:1422
  1: (18) r1 = 0xffffc90000191478       ; R1_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144)
  3: (61) r6 = *(u32 *)(r1 +128)        ; R1_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144) R6_w=scalar(smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff))
  ; if (n > ARRAY_SIZE(loop_data.data)) @ iters.c:1424
  4: (26) if w6 > 0x20 goto pc+27       ; R6_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f))
  5: (bf) r8 = r10                      ; R8_w=fp0 R10=fp0
  6: (07) r8 += -8                      ; R8_w=fp-8
  ; bpf_for(i, 0, n) { @ iters.c:1427
  7: (bf) r1 = r8                       ; R1_w=fp-8 R8_w=fp-8
  8: (b4) w2 = 0                        ; R2_w=0
  9: (bc) w3 = w6                       ; R3_w=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R6_w=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f))
  10: (85) call bpf_iter_num_new#45179          ; R0=scalar() fp-8=iter_num(ref_id=2,state=active,depth=0) refs=2
  11: (bf) r1 = r8                      ; R1=fp-8 R8=fp-8 refs=2
  12: (85) call bpf_iter_num_next#45181 13: R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R6=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=0 R8=fp-8 R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=1) refs=2
  ; bpf_for(i, 0, n) { @ iters.c:1427
  13: (15) if r0 == 0x0 goto pc+2       ; R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) refs=2
  14: (81) r1 = *(s32 *)(r0 +0)         ; R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R1_w=scalar(smin=0xffffffff80000000,smax=0x7fffffff) refs=2
  15: (ae) if w1 < w6 goto pc+4 20: R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R1=scalar(smin=0xffffffff80000000,smax=smax32=umax32=31,umax=0xffffffff0000001f,smin32=0,var_off=(0x0; 0xffffffff0000001f)) R6=scalar(id=1,smin=umin=smin32=umin32=1,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=0 R8=fp-8 R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=1) refs=2
  ; sum += loop_data.data[i]; @ iters.c:1429
  20: (67) r1 <<= 2                     ; R1_w=scalar(smax=0x7ffffffc0000007c,umax=0xfffffffc0000007c,smin32=0,smax32=umax32=124,var_off=(0x0; 0xfffffffc0000007c)) refs=2
  21: (18) r2 = 0xffffc90000191478      ; R2_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144) refs=2
  23: (0f) r2 += r1
  math between map_value pointer and register with unbounded min value is not allowed

The source code:
  int iter_arr_with_actual_elem_count(const void *ctx)
  {
        int i, n = loop_data.n, sum = 0;

        if (n > ARRAY_SIZE(loop_data.data))
                return 0;

        bpf_for(i, 0, n) {
                /* no rechecking of i against ARRAY_SIZE(loop_data.n) */
                sum += loop_data.data[i];
        }

        return sum;
  }

The insn #14 is a sign-extenstion load which is related to 'int i'.
The insn #15 did a subreg comparision. Note that smin=0xffffffff80000000 and this caused later
insn #23 failed verification due to unbounded min value.

Actually insn #15 R1 smin range can be better. Before insn #15, we have
  R1_w=scalar(smin=0xffffffff80000000,smax=0x7fffffff)
With the above range, we know for R1, upper 32bit can only be 0xffffffff or 0.
Otherwise, the value range for R1 could be beyond [smin=0xffffffff80000000,smax=0x7fffffff].

After insn #15, for the true patch, we know smin32=0 and smax32=32. With the upper 32bit 0xffffffff,
then the corresponding value is [0xffffffff00000000, 0xffffffff00000020]. The range is
obviously beyond the original range [smin=0xffffffff80000000,smax=0x7fffffff] and the
range is not possible. So the upper 32bit must be 0, which implies smin = smin32 and
smax = smax32.

This patch fixed the issue by adding additional register deduction after 32-bit compare
insn. If the signed 32-bit register range is non-negative then 64-bit smin is
in range of [S32_MIN, S32_MAX], then the actual 64-bit smin/smax should be the same
as 32-bit smin32/smax32.

With this patch, iters/iter_arr_with_actual_elem_count succeeded with better register range:

from 15 to 20: R0=rdonly_mem(id=7,ref_obj_id=2,sz=4) R1_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=31,var_off=(0x0; 0x1f)) R6=scalar(id=1,smin=umin=smin32=umin32=1,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=scalar(id=9,smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff)) R8=scalar(id=9,smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff)) R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=3) refs=2

Acked-by: Eduard Zingerman <[email protected]>
Acked-by: Shung-Hsi Yu <[email protected]>
Signed-off-by: Yonghong Song <[email protected]>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Jul 23, 2024
With latest llvm19, the selftest iters/iter_arr_with_actual_elem_count
failed with -mcpu=v4.

The following are the details:
  0: R1=ctx() R10=fp0
  ; int iter_arr_with_actual_elem_count(const void *ctx) @ iters.c:1420
  0: (b4) w7 = 0                        ; R7_w=0
  ; int i, n = loop_data.n, sum = 0; @ iters.c:1422
  1: (18) r1 = 0xffffc90000191478       ; R1_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144)
  3: (61) r6 = *(u32 *)(r1 +128)        ; R1_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144) R6_w=scalar(smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff))
  ; if (n > ARRAY_SIZE(loop_data.data)) @ iters.c:1424
  4: (26) if w6 > 0x20 goto pc+27       ; R6_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f))
  5: (bf) r8 = r10                      ; R8_w=fp0 R10=fp0
  6: (07) r8 += -8                      ; R8_w=fp-8
  ; bpf_for(i, 0, n) { @ iters.c:1427
  7: (bf) r1 = r8                       ; R1_w=fp-8 R8_w=fp-8
  8: (b4) w2 = 0                        ; R2_w=0
  9: (bc) w3 = w6                       ; R3_w=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R6_w=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f))
  10: (85) call bpf_iter_num_new#45179          ; R0=scalar() fp-8=iter_num(ref_id=2,state=active,depth=0) refs=2
  11: (bf) r1 = r8                      ; R1=fp-8 R8=fp-8 refs=2
  12: (85) call bpf_iter_num_next#45181 13: R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R6=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=0 R8=fp-8 R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=1) refs=2
  ; bpf_for(i, 0, n) { @ iters.c:1427
  13: (15) if r0 == 0x0 goto pc+2       ; R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) refs=2
  14: (81) r1 = *(s32 *)(r0 +0)         ; R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R1_w=scalar(smin=0xffffffff80000000,smax=0x7fffffff) refs=2
  15: (ae) if w1 < w6 goto pc+4 20: R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R1=scalar(smin=0xffffffff80000000,smax=smax32=umax32=31,umax=0xffffffff0000001f,smin32=0,var_off=(0x0; 0xffffffff0000001f)) R6=scalar(id=1,smin=umin=smin32=umin32=1,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=0 R8=fp-8 R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=1) refs=2
  ; sum += loop_data.data[i]; @ iters.c:1429
  20: (67) r1 <<= 2                     ; R1_w=scalar(smax=0x7ffffffc0000007c,umax=0xfffffffc0000007c,smin32=0,smax32=umax32=124,var_off=(0x0; 0xfffffffc0000007c)) refs=2
  21: (18) r2 = 0xffffc90000191478      ; R2_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144) refs=2
  23: (0f) r2 += r1
  math between map_value pointer and register with unbounded min value is not allowed

The source code:
  int iter_arr_with_actual_elem_count(const void *ctx)
  {
        int i, n = loop_data.n, sum = 0;

        if (n > ARRAY_SIZE(loop_data.data))
                return 0;

        bpf_for(i, 0, n) {
                /* no rechecking of i against ARRAY_SIZE(loop_data.n) */
                sum += loop_data.data[i];
        }

        return sum;
  }

The insn #14 is a sign-extenstion load which is related to 'int i'.
The insn #15 did a subreg comparision. Note that smin=0xffffffff80000000 and this caused later
insn #23 failed verification due to unbounded min value.

Actually insn #15 R1 smin range can be better. Before insn #15, we have
  R1_w=scalar(smin=0xffffffff80000000,smax=0x7fffffff)
With the above range, we know for R1, upper 32bit can only be 0xffffffff or 0.
Otherwise, the value range for R1 could be beyond [smin=0xffffffff80000000,smax=0x7fffffff].

After insn #15, for the true patch, we know smin32=0 and smax32=32. With the upper 32bit 0xffffffff,
then the corresponding value is [0xffffffff00000000, 0xffffffff00000020]. The range is
obviously beyond the original range [smin=0xffffffff80000000,smax=0x7fffffff] and the
range is not possible. So the upper 32bit must be 0, which implies smin = smin32 and
smax = smax32.

This patch fixed the issue by adding additional register deduction after 32-bit compare
insn. If the signed 32-bit register range is non-negative then 64-bit smin is
in range of [S32_MIN, S32_MAX], then the actual 64-bit smin/smax should be the same
as 32-bit smin32/smax32.

With this patch, iters/iter_arr_with_actual_elem_count succeeded with better register range:

from 15 to 20: R0=rdonly_mem(id=7,ref_obj_id=2,sz=4) R1_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=31,var_off=(0x0; 0x1f)) R6=scalar(id=1,smin=umin=smin32=umin32=1,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=scalar(id=9,smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff)) R8=scalar(id=9,smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff)) R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=3) refs=2

Acked-by: Eduard Zingerman <[email protected]>
Acked-by: Shung-Hsi Yu <[email protected]>
Signed-off-by: Yonghong Song <[email protected]>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Jul 24, 2024
With latest llvm19, the selftest iters/iter_arr_with_actual_elem_count
failed with -mcpu=v4.

The following are the details:
  0: R1=ctx() R10=fp0
  ; int iter_arr_with_actual_elem_count(const void *ctx) @ iters.c:1420
  0: (b4) w7 = 0                        ; R7_w=0
  ; int i, n = loop_data.n, sum = 0; @ iters.c:1422
  1: (18) r1 = 0xffffc90000191478       ; R1_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144)
  3: (61) r6 = *(u32 *)(r1 +128)        ; R1_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144) R6_w=scalar(smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff))
  ; if (n > ARRAY_SIZE(loop_data.data)) @ iters.c:1424
  4: (26) if w6 > 0x20 goto pc+27       ; R6_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f))
  5: (bf) r8 = r10                      ; R8_w=fp0 R10=fp0
  6: (07) r8 += -8                      ; R8_w=fp-8
  ; bpf_for(i, 0, n) { @ iters.c:1427
  7: (bf) r1 = r8                       ; R1_w=fp-8 R8_w=fp-8
  8: (b4) w2 = 0                        ; R2_w=0
  9: (bc) w3 = w6                       ; R3_w=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R6_w=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f))
  10: (85) call bpf_iter_num_new#45179          ; R0=scalar() fp-8=iter_num(ref_id=2,state=active,depth=0) refs=2
  11: (bf) r1 = r8                      ; R1=fp-8 R8=fp-8 refs=2
  12: (85) call bpf_iter_num_next#45181 13: R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R6=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=0 R8=fp-8 R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=1) refs=2
  ; bpf_for(i, 0, n) { @ iters.c:1427
  13: (15) if r0 == 0x0 goto pc+2       ; R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) refs=2
  14: (81) r1 = *(s32 *)(r0 +0)         ; R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R1_w=scalar(smin=0xffffffff80000000,smax=0x7fffffff) refs=2
  15: (ae) if w1 < w6 goto pc+4 20: R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R1=scalar(smin=0xffffffff80000000,smax=smax32=umax32=31,umax=0xffffffff0000001f,smin32=0,var_off=(0x0; 0xffffffff0000001f)) R6=scalar(id=1,smin=umin=smin32=umin32=1,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=0 R8=fp-8 R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=1) refs=2
  ; sum += loop_data.data[i]; @ iters.c:1429
  20: (67) r1 <<= 2                     ; R1_w=scalar(smax=0x7ffffffc0000007c,umax=0xfffffffc0000007c,smin32=0,smax32=umax32=124,var_off=(0x0; 0xfffffffc0000007c)) refs=2
  21: (18) r2 = 0xffffc90000191478      ; R2_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144) refs=2
  23: (0f) r2 += r1
  math between map_value pointer and register with unbounded min value is not allowed

The source code:
  int iter_arr_with_actual_elem_count(const void *ctx)
  {
        int i, n = loop_data.n, sum = 0;

        if (n > ARRAY_SIZE(loop_data.data))
                return 0;

        bpf_for(i, 0, n) {
                /* no rechecking of i against ARRAY_SIZE(loop_data.n) */
                sum += loop_data.data[i];
        }

        return sum;
  }

The insn #14 is a sign-extenstion load which is related to 'int i'.
The insn #15 did a subreg comparision. Note that smin=0xffffffff80000000 and this caused later
insn #23 failed verification due to unbounded min value.

Actually insn #15 R1 smin range can be better. Before insn #15, we have
  R1_w=scalar(smin=0xffffffff80000000,smax=0x7fffffff)
With the above range, we know for R1, upper 32bit can only be 0xffffffff or 0.
Otherwise, the value range for R1 could be beyond [smin=0xffffffff80000000,smax=0x7fffffff].

After insn #15, for the true patch, we know smin32=0 and smax32=32. With the upper 32bit 0xffffffff,
then the corresponding value is [0xffffffff00000000, 0xffffffff00000020]. The range is
obviously beyond the original range [smin=0xffffffff80000000,smax=0x7fffffff] and the
range is not possible. So the upper 32bit must be 0, which implies smin = smin32 and
smax = smax32.

This patch fixed the issue by adding additional register deduction after 32-bit compare
insn. If the signed 32-bit register range is non-negative then 64-bit smin is
in range of [S32_MIN, S32_MAX], then the actual 64-bit smin/smax should be the same
as 32-bit smin32/smax32.

With this patch, iters/iter_arr_with_actual_elem_count succeeded with better register range:

from 15 to 20: R0=rdonly_mem(id=7,ref_obj_id=2,sz=4) R1_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=31,var_off=(0x0; 0x1f)) R6=scalar(id=1,smin=umin=smin32=umin32=1,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=scalar(id=9,smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff)) R8=scalar(id=9,smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff)) R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=3) refs=2

Acked-by: Eduard Zingerman <[email protected]>
Acked-by: Shung-Hsi Yu <[email protected]>
Signed-off-by: Yonghong Song <[email protected]>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Jul 24, 2024
With latest llvm19, the selftest iters/iter_arr_with_actual_elem_count
failed with -mcpu=v4.

The following are the details:
  0: R1=ctx() R10=fp0
  ; int iter_arr_with_actual_elem_count(const void *ctx) @ iters.c:1420
  0: (b4) w7 = 0                        ; R7_w=0
  ; int i, n = loop_data.n, sum = 0; @ iters.c:1422
  1: (18) r1 = 0xffffc90000191478       ; R1_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144)
  3: (61) r6 = *(u32 *)(r1 +128)        ; R1_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144) R6_w=scalar(smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff))
  ; if (n > ARRAY_SIZE(loop_data.data)) @ iters.c:1424
  4: (26) if w6 > 0x20 goto pc+27       ; R6_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f))
  5: (bf) r8 = r10                      ; R8_w=fp0 R10=fp0
  6: (07) r8 += -8                      ; R8_w=fp-8
  ; bpf_for(i, 0, n) { @ iters.c:1427
  7: (bf) r1 = r8                       ; R1_w=fp-8 R8_w=fp-8
  8: (b4) w2 = 0                        ; R2_w=0
  9: (bc) w3 = w6                       ; R3_w=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R6_w=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f))
  10: (85) call bpf_iter_num_new#45179          ; R0=scalar() fp-8=iter_num(ref_id=2,state=active,depth=0) refs=2
  11: (bf) r1 = r8                      ; R1=fp-8 R8=fp-8 refs=2
  12: (85) call bpf_iter_num_next#45181 13: R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R6=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=0 R8=fp-8 R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=1) refs=2
  ; bpf_for(i, 0, n) { @ iters.c:1427
  13: (15) if r0 == 0x0 goto pc+2       ; R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) refs=2
  14: (81) r1 = *(s32 *)(r0 +0)         ; R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R1_w=scalar(smin=0xffffffff80000000,smax=0x7fffffff) refs=2
  15: (ae) if w1 < w6 goto pc+4 20: R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R1=scalar(smin=0xffffffff80000000,smax=smax32=umax32=31,umax=0xffffffff0000001f,smin32=0,var_off=(0x0; 0xffffffff0000001f)) R6=scalar(id=1,smin=umin=smin32=umin32=1,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=0 R8=fp-8 R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=1) refs=2
  ; sum += loop_data.data[i]; @ iters.c:1429
  20: (67) r1 <<= 2                     ; R1_w=scalar(smax=0x7ffffffc0000007c,umax=0xfffffffc0000007c,smin32=0,smax32=umax32=124,var_off=(0x0; 0xfffffffc0000007c)) refs=2
  21: (18) r2 = 0xffffc90000191478      ; R2_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144) refs=2
  23: (0f) r2 += r1
  math between map_value pointer and register with unbounded min value is not allowed

The source code:
  int iter_arr_with_actual_elem_count(const void *ctx)
  {
        int i, n = loop_data.n, sum = 0;

        if (n > ARRAY_SIZE(loop_data.data))
                return 0;

        bpf_for(i, 0, n) {
                /* no rechecking of i against ARRAY_SIZE(loop_data.n) */
                sum += loop_data.data[i];
        }

        return sum;
  }

The insn #14 is a sign-extenstion load which is related to 'int i'.
The insn #15 did a subreg comparision. Note that smin=0xffffffff80000000 and this caused later
insn #23 failed verification due to unbounded min value.

Actually insn #15 R1 smin range can be better. Before insn #15, we have
  R1_w=scalar(smin=0xffffffff80000000,smax=0x7fffffff)
With the above range, we know for R1, upper 32bit can only be 0xffffffff or 0.
Otherwise, the value range for R1 could be beyond [smin=0xffffffff80000000,smax=0x7fffffff].

After insn #15, for the true patch, we know smin32=0 and smax32=32. With the upper 32bit 0xffffffff,
then the corresponding value is [0xffffffff00000000, 0xffffffff00000020]. The range is
obviously beyond the original range [smin=0xffffffff80000000,smax=0x7fffffff] and the
range is not possible. So the upper 32bit must be 0, which implies smin = smin32 and
smax = smax32.

This patch fixed the issue by adding additional register deduction after 32-bit compare
insn. If the signed 32-bit register range is non-negative then 64-bit smin is
in range of [S32_MIN, S32_MAX], then the actual 64-bit smin/smax should be the same
as 32-bit smin32/smax32.

With this patch, iters/iter_arr_with_actual_elem_count succeeded with better register range:

from 15 to 20: R0=rdonly_mem(id=7,ref_obj_id=2,sz=4) R1_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=31,var_off=(0x0; 0x1f)) R6=scalar(id=1,smin=umin=smin32=umin32=1,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=scalar(id=9,smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff)) R8=scalar(id=9,smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff)) R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=3) refs=2

Acked-by: Eduard Zingerman <[email protected]>
Acked-by: Shung-Hsi Yu <[email protected]>
Signed-off-by: Yonghong Song <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Jul 29, 2024
With latest llvm19, the selftest iters/iter_arr_with_actual_elem_count
failed with -mcpu=v4.

The following are the details:
  0: R1=ctx() R10=fp0
  ; int iter_arr_with_actual_elem_count(const void *ctx) @ iters.c:1420
  0: (b4) w7 = 0                        ; R7_w=0
  ; int i, n = loop_data.n, sum = 0; @ iters.c:1422
  1: (18) r1 = 0xffffc90000191478       ; R1_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144)
  3: (61) r6 = *(u32 *)(r1 +128)        ; R1_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144) R6_w=scalar(smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff))
  ; if (n > ARRAY_SIZE(loop_data.data)) @ iters.c:1424
  4: (26) if w6 > 0x20 goto pc+27       ; R6_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f))
  5: (bf) r8 = r10                      ; R8_w=fp0 R10=fp0
  6: (07) r8 += -8                      ; R8_w=fp-8
  ; bpf_for(i, 0, n) { @ iters.c:1427
  7: (bf) r1 = r8                       ; R1_w=fp-8 R8_w=fp-8
  8: (b4) w2 = 0                        ; R2_w=0
  9: (bc) w3 = w6                       ; R3_w=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R6_w=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f))
  10: (85) call bpf_iter_num_new#45179          ; R0=scalar() fp-8=iter_num(ref_id=2,state=active,depth=0) refs=2
  11: (bf) r1 = r8                      ; R1=fp-8 R8=fp-8 refs=2
  12: (85) call bpf_iter_num_next#45181 13: R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R6=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=0 R8=fp-8 R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=1) refs=2
  ; bpf_for(i, 0, n) { @ iters.c:1427
  13: (15) if r0 == 0x0 goto pc+2       ; R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) refs=2
  14: (81) r1 = *(s32 *)(r0 +0)         ; R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R1_w=scalar(smin=0xffffffff80000000,smax=0x7fffffff) refs=2
  15: (ae) if w1 < w6 goto pc+4 20: R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R1=scalar(smin=0xffffffff80000000,smax=smax32=umax32=31,umax=0xffffffff0000001f,smin32=0,var_off=(0x0; 0xffffffff0000001f)) R6=scalar(id=1,smin=umin=smin32=umin32=1,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=0 R8=fp-8 R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=1) refs=2
  ; sum += loop_data.data[i]; @ iters.c:1429
  20: (67) r1 <<= 2                     ; R1_w=scalar(smax=0x7ffffffc0000007c,umax=0xfffffffc0000007c,smin32=0,smax32=umax32=124,var_off=(0x0; 0xfffffffc0000007c)) refs=2
  21: (18) r2 = 0xffffc90000191478      ; R2_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144) refs=2
  23: (0f) r2 += r1
  math between map_value pointer and register with unbounded min value is not allowed

The source code:
  int iter_arr_with_actual_elem_count(const void *ctx)
  {
        int i, n = loop_data.n, sum = 0;

        if (n > ARRAY_SIZE(loop_data.data))
                return 0;

        bpf_for(i, 0, n) {
                /* no rechecking of i against ARRAY_SIZE(loop_data.n) */
                sum += loop_data.data[i];
        }

        return sum;
  }

The insn #14 is a sign-extenstion load which is related to 'int i'.
The insn #15 did a subreg comparision. Note that smin=0xffffffff80000000 and this caused later
insn #23 failed verification due to unbounded min value.

Actually insn #15 R1 smin range can be better. Before insn #15, we have
  R1_w=scalar(smin=0xffffffff80000000,smax=0x7fffffff)
With the above range, we know for R1, upper 32bit can only be 0xffffffff or 0.
Otherwise, the value range for R1 could be beyond [smin=0xffffffff80000000,smax=0x7fffffff].

After insn #15, for the true patch, we know smin32=0 and smax32=32. With the upper 32bit 0xffffffff,
then the corresponding value is [0xffffffff00000000, 0xffffffff00000020]. The range is
obviously beyond the original range [smin=0xffffffff80000000,smax=0x7fffffff] and the
range is not possible. So the upper 32bit must be 0, which implies smin = smin32 and
smax = smax32.

This patch fixed the issue by adding additional register deduction after 32-bit compare
insn. If the signed 32-bit register range is non-negative then 64-bit smin is
in range of [S32_MIN, S32_MAX], then the actual 64-bit smin/smax should be the same
as 32-bit smin32/smax32.

With this patch, iters/iter_arr_with_actual_elem_count succeeded with better register range:

from 15 to 20: R0=rdonly_mem(id=7,ref_obj_id=2,sz=4) R1_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=31,var_off=(0x0; 0x1f)) R6=scalar(id=1,smin=umin=smin32=umin32=1,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=scalar(id=9,smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff)) R8=scalar(id=9,smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff)) R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=3) refs=2

Acked-by: Eduard Zingerman <[email protected]>
Acked-by: Shung-Hsi Yu <[email protected]>
Signed-off-by: Yonghong Song <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
Signed-off-by: Andrii Nakryiko <[email protected]>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Jul 29, 2024
With latest llvm19, the selftest iters/iter_arr_with_actual_elem_count
failed with -mcpu=v4.

The following are the details:
  0: R1=ctx() R10=fp0
  ; int iter_arr_with_actual_elem_count(const void *ctx) @ iters.c:1420
  0: (b4) w7 = 0                        ; R7_w=0
  ; int i, n = loop_data.n, sum = 0; @ iters.c:1422
  1: (18) r1 = 0xffffc90000191478       ; R1_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144)
  3: (61) r6 = *(u32 *)(r1 +128)        ; R1_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144) R6_w=scalar(smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff))
  ; if (n > ARRAY_SIZE(loop_data.data)) @ iters.c:1424
  4: (26) if w6 > 0x20 goto pc+27       ; R6_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f))
  5: (bf) r8 = r10                      ; R8_w=fp0 R10=fp0
  6: (07) r8 += -8                      ; R8_w=fp-8
  ; bpf_for(i, 0, n) { @ iters.c:1427
  7: (bf) r1 = r8                       ; R1_w=fp-8 R8_w=fp-8
  8: (b4) w2 = 0                        ; R2_w=0
  9: (bc) w3 = w6                       ; R3_w=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R6_w=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f))
  10: (85) call bpf_iter_num_new#45179          ; R0=scalar() fp-8=iter_num(ref_id=2,state=active,depth=0) refs=2
  11: (bf) r1 = r8                      ; R1=fp-8 R8=fp-8 refs=2
  12: (85) call bpf_iter_num_next#45181 13: R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R6=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=0 R8=fp-8 R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=1) refs=2
  ; bpf_for(i, 0, n) { @ iters.c:1427
  13: (15) if r0 == 0x0 goto pc+2       ; R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) refs=2
  14: (81) r1 = *(s32 *)(r0 +0)         ; R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R1_w=scalar(smin=0xffffffff80000000,smax=0x7fffffff) refs=2
  15: (ae) if w1 < w6 goto pc+4 20: R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R1=scalar(smin=0xffffffff80000000,smax=smax32=umax32=31,umax=0xffffffff0000001f,smin32=0,var_off=(0x0; 0xffffffff0000001f)) R6=scalar(id=1,smin=umin=smin32=umin32=1,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=0 R8=fp-8 R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=1) refs=2
  ; sum += loop_data.data[i]; @ iters.c:1429
  20: (67) r1 <<= 2                     ; R1_w=scalar(smax=0x7ffffffc0000007c,umax=0xfffffffc0000007c,smin32=0,smax32=umax32=124,var_off=(0x0; 0xfffffffc0000007c)) refs=2
  21: (18) r2 = 0xffffc90000191478      ; R2_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144) refs=2
  23: (0f) r2 += r1
  math between map_value pointer and register with unbounded min value is not allowed

The source code:
  int iter_arr_with_actual_elem_count(const void *ctx)
  {
        int i, n = loop_data.n, sum = 0;

        if (n > ARRAY_SIZE(loop_data.data))
                return 0;

        bpf_for(i, 0, n) {
                /* no rechecking of i against ARRAY_SIZE(loop_data.n) */
                sum += loop_data.data[i];
        }

        return sum;
  }

The insn #14 is a sign-extenstion load which is related to 'int i'.
The insn #15 did a subreg comparision. Note that smin=0xffffffff80000000 and this caused later
insn #23 failed verification due to unbounded min value.

Actually insn #15 R1 smin range can be better. Before insn #15, we have
  R1_w=scalar(smin=0xffffffff80000000,smax=0x7fffffff)
With the above range, we know for R1, upper 32bit can only be 0xffffffff or 0.
Otherwise, the value range for R1 could be beyond [smin=0xffffffff80000000,smax=0x7fffffff].

After insn #15, for the true patch, we know smin32=0 and smax32=32. With the upper 32bit 0xffffffff,
then the corresponding value is [0xffffffff00000000, 0xffffffff00000020]. The range is
obviously beyond the original range [smin=0xffffffff80000000,smax=0x7fffffff] and the
range is not possible. So the upper 32bit must be 0, which implies smin = smin32 and
smax = smax32.

This patch fixed the issue by adding additional register deduction after 32-bit compare
insn. If the signed 32-bit register range is non-negative then 64-bit smin is
in range of [S32_MIN, S32_MAX], then the actual 64-bit smin/smax should be the same
as 32-bit smin32/smax32.

With this patch, iters/iter_arr_with_actual_elem_count succeeded with better register range:

from 15 to 20: R0=rdonly_mem(id=7,ref_obj_id=2,sz=4) R1_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=31,var_off=(0x0; 0x1f)) R6=scalar(id=1,smin=umin=smin32=umin32=1,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=scalar(id=9,smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff)) R8=scalar(id=9,smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff)) R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=3) refs=2

Acked-by: Eduard Zingerman <[email protected]>
Acked-by: Shung-Hsi Yu <[email protected]>
Signed-off-by: Yonghong Song <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Alexei Starovoitov <[email protected]>
Signed-off-by: Andrii Nakryiko <[email protected]>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Sep 19, 2024
rxq contains a pointer to the device from where
the redirect happened. Currently, the BPF program
that was executed after a redirect via BPF_MAP_TYPE_DEVMAP*
does not have it set.

This is particularly bad since accessing ingress_ifindex, e.g.

SEC("xdp")
int prog(struct xdp_md *pkt)
{
        return bpf_redirect_map(&dev_redirect_map, 0, 0);
}

SEC("xdp/devmap")
int prog_after_redirect(struct xdp_md *pkt)
{
        bpf_printk("ifindex %i", pkt->ingress_ifindex);
        return XDP_PASS;
}

depends on access to rxq, so a NULL pointer gets dereferenced:

<1>[  574.475170] BUG: kernel NULL pointer dereference, address: 0000000000000000
<1>[  574.475188] #PF: supervisor read access in kernel mode
<1>[  574.475194] #PF: error_code(0x0000) - not-present page
<6>[  574.475199] PGD 0 P4D 0
<4>[  574.475207] Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI
<4>[  574.475217] CPU: 4 UID: 0 PID: 217 Comm: kworker/4:1 Not tainted 6.11.0-rc5-reduced-00859-g780801200300 #23
<4>[  574.475226] Hardware name: Intel(R) Client Systems NUC13ANHi7/NUC13ANBi7, BIOS ANRPL357.0026.2023.0314.1458 03/14/2023
<4>[  574.475231] Workqueue: mld mld_ifc_work
<4>[  574.475247] RIP: 0010:bpf_prog_5e13354d9cf5018a_prog_after_redirect+0x17/0x3c
<4>[  574.475257] Code: cc cc cc cc cc cc cc 80 00 00 00 cc cc cc cc cc cc cc cc f3 0f 1e fa 0f 1f 44 00 00 66 90 55 48 89 e5 f3 0f 1e fa 48 8b 57 20 <48> 8b 52 00 8b 92 e0 00 00 00 48 bf f8 a6 d5 c4 5d a0 ff ff be 0b
<4>[  574.475263] RSP: 0018:ffffa62440280c98 EFLAGS: 00010206
<4>[  574.475269] RAX: ffffa62440280cd8 RBX: 0000000000000001 RCX: 0000000000000000
<4>[  574.475274] RDX: 0000000000000000 RSI: ffffa62440549048 RDI: ffffa62440280ce0
<4>[  574.475278] RBP: ffffa62440280c98 R08: 0000000000000002 R09: 0000000000000001
<4>[  574.475281] R10: ffffa05dc8b98000 R11: ffffa05f577fca40 R12: ffffa05dcab24000
<4>[  574.475285] R13: ffffa62440280ce0 R14: ffffa62440549048 R15: ffffa62440549000
<4>[  574.475289] FS:  0000000000000000(0000) GS:ffffa05f4f700000(0000) knlGS:0000000000000000
<4>[  574.475294] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
<4>[  574.475298] CR2: 0000000000000000 CR3: 000000025522e000 CR4: 0000000000f50ef0
<4>[  574.475303] PKRU: 55555554
<4>[  574.475306] Call Trace:
<4>[  574.475313]  <IRQ>
<4>[  574.475318]  ? __die+0x23/0x70
<4>[  574.475329]  ? page_fault_oops+0x180/0x4c0
<4>[  574.475339]  ? skb_pp_cow_data+0x34c/0x490
<4>[  574.475346]  ? kmem_cache_free+0x257/0x280
<4>[  574.475357]  ? exc_page_fault+0x67/0x150
<4>[  574.475368]  ? asm_exc_page_fault+0x26/0x30
<4>[  574.475381]  ? bpf_prog_5e13354d9cf5018a_prog_after_redirect+0x17/0x3c
<4>[  574.475386]  bq_xmit_all+0x158/0x420
<4>[  574.475397]  __dev_flush+0x30/0x90
<4>[  574.475407]  veth_poll+0x216/0x250 [veth]
<4>[  574.475421]  __napi_poll+0x28/0x1c0
<4>[  574.475430]  net_rx_action+0x32d/0x3a0
<4>[  574.475441]  handle_softirqs+0xcb/0x2c0
<4>[  574.475451]  do_softirq+0x40/0x60
<4>[  574.475458]  </IRQ>
<4>[  574.475461]  <TASK>
<4>[  574.475464]  __local_bh_enable_ip+0x66/0x70
<4>[  574.475471]  __dev_queue_xmit+0x268/0xe40
<4>[  574.475480]  ? selinux_ip_postroute+0x213/0x420
<4>[  574.475491]  ? alloc_skb_with_frags+0x4a/0x1d0
<4>[  574.475502]  ip6_finish_output2+0x2be/0x640
<4>[  574.475512]  ? nf_hook_slow+0x42/0xf0
<4>[  574.475521]  ip6_finish_output+0x194/0x300
<4>[  574.475529]  ? __pfx_ip6_finish_output+0x10/0x10
<4>[  574.475538]  mld_sendpack+0x17c/0x240
<4>[  574.475548]  mld_ifc_work+0x192/0x410
<4>[  574.475557]  process_one_work+0x15d/0x380
<4>[  574.475566]  worker_thread+0x29d/0x3a0
<4>[  574.475573]  ? __pfx_worker_thread+0x10/0x10
<4>[  574.475580]  ? __pfx_worker_thread+0x10/0x10
<4>[  574.475587]  kthread+0xcd/0x100
<4>[  574.475597]  ? __pfx_kthread+0x10/0x10
<4>[  574.475606]  ret_from_fork+0x31/0x50
<4>[  574.475615]  ? __pfx_kthread+0x10/0x10
<4>[  574.475623]  ret_from_fork_asm+0x1a/0x30
<4>[  574.475635]  </TASK>
<4>[  574.475637] Modules linked in: veth br_netfilter bridge stp llc iwlmvm x86_pkg_temp_thermal iwlwifi efivarfs nvme nvme_core
<4>[  574.475662] CR2: 0000000000000000
<4>[  574.475668] ---[ end trace 0000000000000000 ]---

Therefore, provide it to the program by setting rxq properly.

Fixes: cb261b5 ("bpf: Run devmap xdp_prog on flush instead of bulk enqueue")
Reviewed-by: Toke Høiland-Jørgensen <[email protected]>
Signed-off-by: Florian Kauer <[email protected]>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Sep 21, 2024
rxq contains a pointer to the device from where
the redirect happened. Currently, the BPF program
that was executed after a redirect via BPF_MAP_TYPE_DEVMAP*
does not have it set.

This is particularly bad since accessing ingress_ifindex, e.g.

SEC("xdp")
int prog(struct xdp_md *pkt)
{
        return bpf_redirect_map(&dev_redirect_map, 0, 0);
}

SEC("xdp/devmap")
int prog_after_redirect(struct xdp_md *pkt)
{
        bpf_printk("ifindex %i", pkt->ingress_ifindex);
        return XDP_PASS;
}

depends on access to rxq, so a NULL pointer gets dereferenced:

<1>[  574.475170] BUG: kernel NULL pointer dereference, address: 0000000000000000
<1>[  574.475188] #PF: supervisor read access in kernel mode
<1>[  574.475194] #PF: error_code(0x0000) - not-present page
<6>[  574.475199] PGD 0 P4D 0
<4>[  574.475207] Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI
<4>[  574.475217] CPU: 4 UID: 0 PID: 217 Comm: kworker/4:1 Not tainted 6.11.0-rc5-reduced-00859-g780801200300 #23
<4>[  574.475226] Hardware name: Intel(R) Client Systems NUC13ANHi7/NUC13ANBi7, BIOS ANRPL357.0026.2023.0314.1458 03/14/2023
<4>[  574.475231] Workqueue: mld mld_ifc_work
<4>[  574.475247] RIP: 0010:bpf_prog_5e13354d9cf5018a_prog_after_redirect+0x17/0x3c
<4>[  574.475257] Code: cc cc cc cc cc cc cc 80 00 00 00 cc cc cc cc cc cc cc cc f3 0f 1e fa 0f 1f 44 00 00 66 90 55 48 89 e5 f3 0f 1e fa 48 8b 57 20 <48> 8b 52 00 8b 92 e0 00 00 00 48 bf f8 a6 d5 c4 5d a0 ff ff be 0b
<4>[  574.475263] RSP: 0018:ffffa62440280c98 EFLAGS: 00010206
<4>[  574.475269] RAX: ffffa62440280cd8 RBX: 0000000000000001 RCX: 0000000000000000
<4>[  574.475274] RDX: 0000000000000000 RSI: ffffa62440549048 RDI: ffffa62440280ce0
<4>[  574.475278] RBP: ffffa62440280c98 R08: 0000000000000002 R09: 0000000000000001
<4>[  574.475281] R10: ffffa05dc8b98000 R11: ffffa05f577fca40 R12: ffffa05dcab24000
<4>[  574.475285] R13: ffffa62440280ce0 R14: ffffa62440549048 R15: ffffa62440549000
<4>[  574.475289] FS:  0000000000000000(0000) GS:ffffa05f4f700000(0000) knlGS:0000000000000000
<4>[  574.475294] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
<4>[  574.475298] CR2: 0000000000000000 CR3: 000000025522e000 CR4: 0000000000f50ef0
<4>[  574.475303] PKRU: 55555554
<4>[  574.475306] Call Trace:
<4>[  574.475313]  <IRQ>
<4>[  574.475318]  ? __die+0x23/0x70
<4>[  574.475329]  ? page_fault_oops+0x180/0x4c0
<4>[  574.475339]  ? skb_pp_cow_data+0x34c/0x490
<4>[  574.475346]  ? kmem_cache_free+0x257/0x280
<4>[  574.475357]  ? exc_page_fault+0x67/0x150
<4>[  574.475368]  ? asm_exc_page_fault+0x26/0x30
<4>[  574.475381]  ? bpf_prog_5e13354d9cf5018a_prog_after_redirect+0x17/0x3c
<4>[  574.475386]  bq_xmit_all+0x158/0x420
<4>[  574.475397]  __dev_flush+0x30/0x90
<4>[  574.475407]  veth_poll+0x216/0x250 [veth]
<4>[  574.475421]  __napi_poll+0x28/0x1c0
<4>[  574.475430]  net_rx_action+0x32d/0x3a0
<4>[  574.475441]  handle_softirqs+0xcb/0x2c0
<4>[  574.475451]  do_softirq+0x40/0x60
<4>[  574.475458]  </IRQ>
<4>[  574.475461]  <TASK>
<4>[  574.475464]  __local_bh_enable_ip+0x66/0x70
<4>[  574.475471]  __dev_queue_xmit+0x268/0xe40
<4>[  574.475480]  ? selinux_ip_postroute+0x213/0x420
<4>[  574.475491]  ? alloc_skb_with_frags+0x4a/0x1d0
<4>[  574.475502]  ip6_finish_output2+0x2be/0x640
<4>[  574.475512]  ? nf_hook_slow+0x42/0xf0
<4>[  574.475521]  ip6_finish_output+0x194/0x300
<4>[  574.475529]  ? __pfx_ip6_finish_output+0x10/0x10
<4>[  574.475538]  mld_sendpack+0x17c/0x240
<4>[  574.475548]  mld_ifc_work+0x192/0x410
<4>[  574.475557]  process_one_work+0x15d/0x380
<4>[  574.475566]  worker_thread+0x29d/0x3a0
<4>[  574.475573]  ? __pfx_worker_thread+0x10/0x10
<4>[  574.475580]  ? __pfx_worker_thread+0x10/0x10
<4>[  574.475587]  kthread+0xcd/0x100
<4>[  574.475597]  ? __pfx_kthread+0x10/0x10
<4>[  574.475606]  ret_from_fork+0x31/0x50
<4>[  574.475615]  ? __pfx_kthread+0x10/0x10
<4>[  574.475623]  ret_from_fork_asm+0x1a/0x30
<4>[  574.475635]  </TASK>
<4>[  574.475637] Modules linked in: veth br_netfilter bridge stp llc iwlmvm x86_pkg_temp_thermal iwlwifi efivarfs nvme nvme_core
<4>[  574.475662] CR2: 0000000000000000
<4>[  574.475668] ---[ end trace 0000000000000000 ]---

Therefore, provide it to the program by setting rxq properly.

Fixes: cb261b5 ("bpf: Run devmap xdp_prog on flush instead of bulk enqueue")
Reviewed-by: Toke Høiland-Jørgensen <[email protected]>
Signed-off-by: Florian Kauer <[email protected]>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Sep 23, 2024
rxq contains a pointer to the device from where
the redirect happened. Currently, the BPF program
that was executed after a redirect via BPF_MAP_TYPE_DEVMAP*
does not have it set.

This is particularly bad since accessing ingress_ifindex, e.g.

SEC("xdp")
int prog(struct xdp_md *pkt)
{
        return bpf_redirect_map(&dev_redirect_map, 0, 0);
}

SEC("xdp/devmap")
int prog_after_redirect(struct xdp_md *pkt)
{
        bpf_printk("ifindex %i", pkt->ingress_ifindex);
        return XDP_PASS;
}

depends on access to rxq, so a NULL pointer gets dereferenced:

<1>[  574.475170] BUG: kernel NULL pointer dereference, address: 0000000000000000
<1>[  574.475188] #PF: supervisor read access in kernel mode
<1>[  574.475194] #PF: error_code(0x0000) - not-present page
<6>[  574.475199] PGD 0 P4D 0
<4>[  574.475207] Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI
<4>[  574.475217] CPU: 4 UID: 0 PID: 217 Comm: kworker/4:1 Not tainted 6.11.0-rc5-reduced-00859-g780801200300 #23
<4>[  574.475226] Hardware name: Intel(R) Client Systems NUC13ANHi7/NUC13ANBi7, BIOS ANRPL357.0026.2023.0314.1458 03/14/2023
<4>[  574.475231] Workqueue: mld mld_ifc_work
<4>[  574.475247] RIP: 0010:bpf_prog_5e13354d9cf5018a_prog_after_redirect+0x17/0x3c
<4>[  574.475257] Code: cc cc cc cc cc cc cc 80 00 00 00 cc cc cc cc cc cc cc cc f3 0f 1e fa 0f 1f 44 00 00 66 90 55 48 89 e5 f3 0f 1e fa 48 8b 57 20 <48> 8b 52 00 8b 92 e0 00 00 00 48 bf f8 a6 d5 c4 5d a0 ff ff be 0b
<4>[  574.475263] RSP: 0018:ffffa62440280c98 EFLAGS: 00010206
<4>[  574.475269] RAX: ffffa62440280cd8 RBX: 0000000000000001 RCX: 0000000000000000
<4>[  574.475274] RDX: 0000000000000000 RSI: ffffa62440549048 RDI: ffffa62440280ce0
<4>[  574.475278] RBP: ffffa62440280c98 R08: 0000000000000002 R09: 0000000000000001
<4>[  574.475281] R10: ffffa05dc8b98000 R11: ffffa05f577fca40 R12: ffffa05dcab24000
<4>[  574.475285] R13: ffffa62440280ce0 R14: ffffa62440549048 R15: ffffa62440549000
<4>[  574.475289] FS:  0000000000000000(0000) GS:ffffa05f4f700000(0000) knlGS:0000000000000000
<4>[  574.475294] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
<4>[  574.475298] CR2: 0000000000000000 CR3: 000000025522e000 CR4: 0000000000f50ef0
<4>[  574.475303] PKRU: 55555554
<4>[  574.475306] Call Trace:
<4>[  574.475313]  <IRQ>
<4>[  574.475318]  ? __die+0x23/0x70
<4>[  574.475329]  ? page_fault_oops+0x180/0x4c0
<4>[  574.475339]  ? skb_pp_cow_data+0x34c/0x490
<4>[  574.475346]  ? kmem_cache_free+0x257/0x280
<4>[  574.475357]  ? exc_page_fault+0x67/0x150
<4>[  574.475368]  ? asm_exc_page_fault+0x26/0x30
<4>[  574.475381]  ? bpf_prog_5e13354d9cf5018a_prog_after_redirect+0x17/0x3c
<4>[  574.475386]  bq_xmit_all+0x158/0x420
<4>[  574.475397]  __dev_flush+0x30/0x90
<4>[  574.475407]  veth_poll+0x216/0x250 [veth]
<4>[  574.475421]  __napi_poll+0x28/0x1c0
<4>[  574.475430]  net_rx_action+0x32d/0x3a0
<4>[  574.475441]  handle_softirqs+0xcb/0x2c0
<4>[  574.475451]  do_softirq+0x40/0x60
<4>[  574.475458]  </IRQ>
<4>[  574.475461]  <TASK>
<4>[  574.475464]  __local_bh_enable_ip+0x66/0x70
<4>[  574.475471]  __dev_queue_xmit+0x268/0xe40
<4>[  574.475480]  ? selinux_ip_postroute+0x213/0x420
<4>[  574.475491]  ? alloc_skb_with_frags+0x4a/0x1d0
<4>[  574.475502]  ip6_finish_output2+0x2be/0x640
<4>[  574.475512]  ? nf_hook_slow+0x42/0xf0
<4>[  574.475521]  ip6_finish_output+0x194/0x300
<4>[  574.475529]  ? __pfx_ip6_finish_output+0x10/0x10
<4>[  574.475538]  mld_sendpack+0x17c/0x240
<4>[  574.475548]  mld_ifc_work+0x192/0x410
<4>[  574.475557]  process_one_work+0x15d/0x380
<4>[  574.475566]  worker_thread+0x29d/0x3a0
<4>[  574.475573]  ? __pfx_worker_thread+0x10/0x10
<4>[  574.475580]  ? __pfx_worker_thread+0x10/0x10
<4>[  574.475587]  kthread+0xcd/0x100
<4>[  574.475597]  ? __pfx_kthread+0x10/0x10
<4>[  574.475606]  ret_from_fork+0x31/0x50
<4>[  574.475615]  ? __pfx_kthread+0x10/0x10
<4>[  574.475623]  ret_from_fork_asm+0x1a/0x30
<4>[  574.475635]  </TASK>
<4>[  574.475637] Modules linked in: veth br_netfilter bridge stp llc iwlmvm x86_pkg_temp_thermal iwlwifi efivarfs nvme nvme_core
<4>[  574.475662] CR2: 0000000000000000
<4>[  574.475668] ---[ end trace 0000000000000000 ]---

Therefore, provide it to the program by setting rxq properly.

Fixes: cb261b5 ("bpf: Run devmap xdp_prog on flush instead of bulk enqueue")
Reviewed-by: Toke Høiland-Jørgensen <[email protected]>
Signed-off-by: Florian Kauer <[email protected]>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Sep 23, 2024
rxq contains a pointer to the device from where
the redirect happened. Currently, the BPF program
that was executed after a redirect via BPF_MAP_TYPE_DEVMAP*
does not have it set.

This is particularly bad since accessing ingress_ifindex, e.g.

SEC("xdp")
int prog(struct xdp_md *pkt)
{
        return bpf_redirect_map(&dev_redirect_map, 0, 0);
}

SEC("xdp/devmap")
int prog_after_redirect(struct xdp_md *pkt)
{
        bpf_printk("ifindex %i", pkt->ingress_ifindex);
        return XDP_PASS;
}

depends on access to rxq, so a NULL pointer gets dereferenced:

<1>[  574.475170] BUG: kernel NULL pointer dereference, address: 0000000000000000
<1>[  574.475188] #PF: supervisor read access in kernel mode
<1>[  574.475194] #PF: error_code(0x0000) - not-present page
<6>[  574.475199] PGD 0 P4D 0
<4>[  574.475207] Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI
<4>[  574.475217] CPU: 4 UID: 0 PID: 217 Comm: kworker/4:1 Not tainted 6.11.0-rc5-reduced-00859-g780801200300 #23
<4>[  574.475226] Hardware name: Intel(R) Client Systems NUC13ANHi7/NUC13ANBi7, BIOS ANRPL357.0026.2023.0314.1458 03/14/2023
<4>[  574.475231] Workqueue: mld mld_ifc_work
<4>[  574.475247] RIP: 0010:bpf_prog_5e13354d9cf5018a_prog_after_redirect+0x17/0x3c
<4>[  574.475257] Code: cc cc cc cc cc cc cc 80 00 00 00 cc cc cc cc cc cc cc cc f3 0f 1e fa 0f 1f 44 00 00 66 90 55 48 89 e5 f3 0f 1e fa 48 8b 57 20 <48> 8b 52 00 8b 92 e0 00 00 00 48 bf f8 a6 d5 c4 5d a0 ff ff be 0b
<4>[  574.475263] RSP: 0018:ffffa62440280c98 EFLAGS: 00010206
<4>[  574.475269] RAX: ffffa62440280cd8 RBX: 0000000000000001 RCX: 0000000000000000
<4>[  574.475274] RDX: 0000000000000000 RSI: ffffa62440549048 RDI: ffffa62440280ce0
<4>[  574.475278] RBP: ffffa62440280c98 R08: 0000000000000002 R09: 0000000000000001
<4>[  574.475281] R10: ffffa05dc8b98000 R11: ffffa05f577fca40 R12: ffffa05dcab24000
<4>[  574.475285] R13: ffffa62440280ce0 R14: ffffa62440549048 R15: ffffa62440549000
<4>[  574.475289] FS:  0000000000000000(0000) GS:ffffa05f4f700000(0000) knlGS:0000000000000000
<4>[  574.475294] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
<4>[  574.475298] CR2: 0000000000000000 CR3: 000000025522e000 CR4: 0000000000f50ef0
<4>[  574.475303] PKRU: 55555554
<4>[  574.475306] Call Trace:
<4>[  574.475313]  <IRQ>
<4>[  574.475318]  ? __die+0x23/0x70
<4>[  574.475329]  ? page_fault_oops+0x180/0x4c0
<4>[  574.475339]  ? skb_pp_cow_data+0x34c/0x490
<4>[  574.475346]  ? kmem_cache_free+0x257/0x280
<4>[  574.475357]  ? exc_page_fault+0x67/0x150
<4>[  574.475368]  ? asm_exc_page_fault+0x26/0x30
<4>[  574.475381]  ? bpf_prog_5e13354d9cf5018a_prog_after_redirect+0x17/0x3c
<4>[  574.475386]  bq_xmit_all+0x158/0x420
<4>[  574.475397]  __dev_flush+0x30/0x90
<4>[  574.475407]  veth_poll+0x216/0x250 [veth]
<4>[  574.475421]  __napi_poll+0x28/0x1c0
<4>[  574.475430]  net_rx_action+0x32d/0x3a0
<4>[  574.475441]  handle_softirqs+0xcb/0x2c0
<4>[  574.475451]  do_softirq+0x40/0x60
<4>[  574.475458]  </IRQ>
<4>[  574.475461]  <TASK>
<4>[  574.475464]  __local_bh_enable_ip+0x66/0x70
<4>[  574.475471]  __dev_queue_xmit+0x268/0xe40
<4>[  574.475480]  ? selinux_ip_postroute+0x213/0x420
<4>[  574.475491]  ? alloc_skb_with_frags+0x4a/0x1d0
<4>[  574.475502]  ip6_finish_output2+0x2be/0x640
<4>[  574.475512]  ? nf_hook_slow+0x42/0xf0
<4>[  574.475521]  ip6_finish_output+0x194/0x300
<4>[  574.475529]  ? __pfx_ip6_finish_output+0x10/0x10
<4>[  574.475538]  mld_sendpack+0x17c/0x240
<4>[  574.475548]  mld_ifc_work+0x192/0x410
<4>[  574.475557]  process_one_work+0x15d/0x380
<4>[  574.475566]  worker_thread+0x29d/0x3a0
<4>[  574.475573]  ? __pfx_worker_thread+0x10/0x10
<4>[  574.475580]  ? __pfx_worker_thread+0x10/0x10
<4>[  574.475587]  kthread+0xcd/0x100
<4>[  574.475597]  ? __pfx_kthread+0x10/0x10
<4>[  574.475606]  ret_from_fork+0x31/0x50
<4>[  574.475615]  ? __pfx_kthread+0x10/0x10
<4>[  574.475623]  ret_from_fork_asm+0x1a/0x30
<4>[  574.475635]  </TASK>
<4>[  574.475637] Modules linked in: veth br_netfilter bridge stp llc iwlmvm x86_pkg_temp_thermal iwlwifi efivarfs nvme nvme_core
<4>[  574.475662] CR2: 0000000000000000
<4>[  574.475668] ---[ end trace 0000000000000000 ]---

Therefore, provide it to the program by setting rxq properly.

Fixes: cb261b5 ("bpf: Run devmap xdp_prog on flush instead of bulk enqueue")
Reviewed-by: Toke Høiland-Jørgensen <[email protected]>
Signed-off-by: Florian Kauer <[email protected]>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Sep 24, 2024
rxq contains a pointer to the device from where
the redirect happened. Currently, the BPF program
that was executed after a redirect via BPF_MAP_TYPE_DEVMAP*
does not have it set.

This is particularly bad since accessing ingress_ifindex, e.g.

SEC("xdp")
int prog(struct xdp_md *pkt)
{
        return bpf_redirect_map(&dev_redirect_map, 0, 0);
}

SEC("xdp/devmap")
int prog_after_redirect(struct xdp_md *pkt)
{
        bpf_printk("ifindex %i", pkt->ingress_ifindex);
        return XDP_PASS;
}

depends on access to rxq, so a NULL pointer gets dereferenced:

<1>[  574.475170] BUG: kernel NULL pointer dereference, address: 0000000000000000
<1>[  574.475188] #PF: supervisor read access in kernel mode
<1>[  574.475194] #PF: error_code(0x0000) - not-present page
<6>[  574.475199] PGD 0 P4D 0
<4>[  574.475207] Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI
<4>[  574.475217] CPU: 4 UID: 0 PID: 217 Comm: kworker/4:1 Not tainted 6.11.0-rc5-reduced-00859-g780801200300 #23
<4>[  574.475226] Hardware name: Intel(R) Client Systems NUC13ANHi7/NUC13ANBi7, BIOS ANRPL357.0026.2023.0314.1458 03/14/2023
<4>[  574.475231] Workqueue: mld mld_ifc_work
<4>[  574.475247] RIP: 0010:bpf_prog_5e13354d9cf5018a_prog_after_redirect+0x17/0x3c
<4>[  574.475257] Code: cc cc cc cc cc cc cc 80 00 00 00 cc cc cc cc cc cc cc cc f3 0f 1e fa 0f 1f 44 00 00 66 90 55 48 89 e5 f3 0f 1e fa 48 8b 57 20 <48> 8b 52 00 8b 92 e0 00 00 00 48 bf f8 a6 d5 c4 5d a0 ff ff be 0b
<4>[  574.475263] RSP: 0018:ffffa62440280c98 EFLAGS: 00010206
<4>[  574.475269] RAX: ffffa62440280cd8 RBX: 0000000000000001 RCX: 0000000000000000
<4>[  574.475274] RDX: 0000000000000000 RSI: ffffa62440549048 RDI: ffffa62440280ce0
<4>[  574.475278] RBP: ffffa62440280c98 R08: 0000000000000002 R09: 0000000000000001
<4>[  574.475281] R10: ffffa05dc8b98000 R11: ffffa05f577fca40 R12: ffffa05dcab24000
<4>[  574.475285] R13: ffffa62440280ce0 R14: ffffa62440549048 R15: ffffa62440549000
<4>[  574.475289] FS:  0000000000000000(0000) GS:ffffa05f4f700000(0000) knlGS:0000000000000000
<4>[  574.475294] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
<4>[  574.475298] CR2: 0000000000000000 CR3: 000000025522e000 CR4: 0000000000f50ef0
<4>[  574.475303] PKRU: 55555554
<4>[  574.475306] Call Trace:
<4>[  574.475313]  <IRQ>
<4>[  574.475318]  ? __die+0x23/0x70
<4>[  574.475329]  ? page_fault_oops+0x180/0x4c0
<4>[  574.475339]  ? skb_pp_cow_data+0x34c/0x490
<4>[  574.475346]  ? kmem_cache_free+0x257/0x280
<4>[  574.475357]  ? exc_page_fault+0x67/0x150
<4>[  574.475368]  ? asm_exc_page_fault+0x26/0x30
<4>[  574.475381]  ? bpf_prog_5e13354d9cf5018a_prog_after_redirect+0x17/0x3c
<4>[  574.475386]  bq_xmit_all+0x158/0x420
<4>[  574.475397]  __dev_flush+0x30/0x90
<4>[  574.475407]  veth_poll+0x216/0x250 [veth]
<4>[  574.475421]  __napi_poll+0x28/0x1c0
<4>[  574.475430]  net_rx_action+0x32d/0x3a0
<4>[  574.475441]  handle_softirqs+0xcb/0x2c0
<4>[  574.475451]  do_softirq+0x40/0x60
<4>[  574.475458]  </IRQ>
<4>[  574.475461]  <TASK>
<4>[  574.475464]  __local_bh_enable_ip+0x66/0x70
<4>[  574.475471]  __dev_queue_xmit+0x268/0xe40
<4>[  574.475480]  ? selinux_ip_postroute+0x213/0x420
<4>[  574.475491]  ? alloc_skb_with_frags+0x4a/0x1d0
<4>[  574.475502]  ip6_finish_output2+0x2be/0x640
<4>[  574.475512]  ? nf_hook_slow+0x42/0xf0
<4>[  574.475521]  ip6_finish_output+0x194/0x300
<4>[  574.475529]  ? __pfx_ip6_finish_output+0x10/0x10
<4>[  574.475538]  mld_sendpack+0x17c/0x240
<4>[  574.475548]  mld_ifc_work+0x192/0x410
<4>[  574.475557]  process_one_work+0x15d/0x380
<4>[  574.475566]  worker_thread+0x29d/0x3a0
<4>[  574.475573]  ? __pfx_worker_thread+0x10/0x10
<4>[  574.475580]  ? __pfx_worker_thread+0x10/0x10
<4>[  574.475587]  kthread+0xcd/0x100
<4>[  574.475597]  ? __pfx_kthread+0x10/0x10
<4>[  574.475606]  ret_from_fork+0x31/0x50
<4>[  574.475615]  ? __pfx_kthread+0x10/0x10
<4>[  574.475623]  ret_from_fork_asm+0x1a/0x30
<4>[  574.475635]  </TASK>
<4>[  574.475637] Modules linked in: veth br_netfilter bridge stp llc iwlmvm x86_pkg_temp_thermal iwlwifi efivarfs nvme nvme_core
<4>[  574.475662] CR2: 0000000000000000
<4>[  574.475668] ---[ end trace 0000000000000000 ]---

Therefore, provide it to the program by setting rxq properly.

Fixes: cb261b5 ("bpf: Run devmap xdp_prog on flush instead of bulk enqueue")
Reviewed-by: Toke Høiland-Jørgensen <[email protected]>
Signed-off-by: Florian Kauer <[email protected]>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Sep 24, 2024
rxq contains a pointer to the device from where
the redirect happened. Currently, the BPF program
that was executed after a redirect via BPF_MAP_TYPE_DEVMAP*
does not have it set.

This is particularly bad since accessing ingress_ifindex, e.g.

SEC("xdp")
int prog(struct xdp_md *pkt)
{
        return bpf_redirect_map(&dev_redirect_map, 0, 0);
}

SEC("xdp/devmap")
int prog_after_redirect(struct xdp_md *pkt)
{
        bpf_printk("ifindex %i", pkt->ingress_ifindex);
        return XDP_PASS;
}

depends on access to rxq, so a NULL pointer gets dereferenced:

<1>[  574.475170] BUG: kernel NULL pointer dereference, address: 0000000000000000
<1>[  574.475188] #PF: supervisor read access in kernel mode
<1>[  574.475194] #PF: error_code(0x0000) - not-present page
<6>[  574.475199] PGD 0 P4D 0
<4>[  574.475207] Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI
<4>[  574.475217] CPU: 4 UID: 0 PID: 217 Comm: kworker/4:1 Not tainted 6.11.0-rc5-reduced-00859-g780801200300 #23
<4>[  574.475226] Hardware name: Intel(R) Client Systems NUC13ANHi7/NUC13ANBi7, BIOS ANRPL357.0026.2023.0314.1458 03/14/2023
<4>[  574.475231] Workqueue: mld mld_ifc_work
<4>[  574.475247] RIP: 0010:bpf_prog_5e13354d9cf5018a_prog_after_redirect+0x17/0x3c
<4>[  574.475257] Code: cc cc cc cc cc cc cc 80 00 00 00 cc cc cc cc cc cc cc cc f3 0f 1e fa 0f 1f 44 00 00 66 90 55 48 89 e5 f3 0f 1e fa 48 8b 57 20 <48> 8b 52 00 8b 92 e0 00 00 00 48 bf f8 a6 d5 c4 5d a0 ff ff be 0b
<4>[  574.475263] RSP: 0018:ffffa62440280c98 EFLAGS: 00010206
<4>[  574.475269] RAX: ffffa62440280cd8 RBX: 0000000000000001 RCX: 0000000000000000
<4>[  574.475274] RDX: 0000000000000000 RSI: ffffa62440549048 RDI: ffffa62440280ce0
<4>[  574.475278] RBP: ffffa62440280c98 R08: 0000000000000002 R09: 0000000000000001
<4>[  574.475281] R10: ffffa05dc8b98000 R11: ffffa05f577fca40 R12: ffffa05dcab24000
<4>[  574.475285] R13: ffffa62440280ce0 R14: ffffa62440549048 R15: ffffa62440549000
<4>[  574.475289] FS:  0000000000000000(0000) GS:ffffa05f4f700000(0000) knlGS:0000000000000000
<4>[  574.475294] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
<4>[  574.475298] CR2: 0000000000000000 CR3: 000000025522e000 CR4: 0000000000f50ef0
<4>[  574.475303] PKRU: 55555554
<4>[  574.475306] Call Trace:
<4>[  574.475313]  <IRQ>
<4>[  574.475318]  ? __die+0x23/0x70
<4>[  574.475329]  ? page_fault_oops+0x180/0x4c0
<4>[  574.475339]  ? skb_pp_cow_data+0x34c/0x490
<4>[  574.475346]  ? kmem_cache_free+0x257/0x280
<4>[  574.475357]  ? exc_page_fault+0x67/0x150
<4>[  574.475368]  ? asm_exc_page_fault+0x26/0x30
<4>[  574.475381]  ? bpf_prog_5e13354d9cf5018a_prog_after_redirect+0x17/0x3c
<4>[  574.475386]  bq_xmit_all+0x158/0x420
<4>[  574.475397]  __dev_flush+0x30/0x90
<4>[  574.475407]  veth_poll+0x216/0x250 [veth]
<4>[  574.475421]  __napi_poll+0x28/0x1c0
<4>[  574.475430]  net_rx_action+0x32d/0x3a0
<4>[  574.475441]  handle_softirqs+0xcb/0x2c0
<4>[  574.475451]  do_softirq+0x40/0x60
<4>[  574.475458]  </IRQ>
<4>[  574.475461]  <TASK>
<4>[  574.475464]  __local_bh_enable_ip+0x66/0x70
<4>[  574.475471]  __dev_queue_xmit+0x268/0xe40
<4>[  574.475480]  ? selinux_ip_postroute+0x213/0x420
<4>[  574.475491]  ? alloc_skb_with_frags+0x4a/0x1d0
<4>[  574.475502]  ip6_finish_output2+0x2be/0x640
<4>[  574.475512]  ? nf_hook_slow+0x42/0xf0
<4>[  574.475521]  ip6_finish_output+0x194/0x300
<4>[  574.475529]  ? __pfx_ip6_finish_output+0x10/0x10
<4>[  574.475538]  mld_sendpack+0x17c/0x240
<4>[  574.475548]  mld_ifc_work+0x192/0x410
<4>[  574.475557]  process_one_work+0x15d/0x380
<4>[  574.475566]  worker_thread+0x29d/0x3a0
<4>[  574.475573]  ? __pfx_worker_thread+0x10/0x10
<4>[  574.475580]  ? __pfx_worker_thread+0x10/0x10
<4>[  574.475587]  kthread+0xcd/0x100
<4>[  574.475597]  ? __pfx_kthread+0x10/0x10
<4>[  574.475606]  ret_from_fork+0x31/0x50
<4>[  574.475615]  ? __pfx_kthread+0x10/0x10
<4>[  574.475623]  ret_from_fork_asm+0x1a/0x30
<4>[  574.475635]  </TASK>
<4>[  574.475637] Modules linked in: veth br_netfilter bridge stp llc iwlmvm x86_pkg_temp_thermal iwlwifi efivarfs nvme nvme_core
<4>[  574.475662] CR2: 0000000000000000
<4>[  574.475668] ---[ end trace 0000000000000000 ]---

Therefore, provide it to the program by setting rxq properly.

Fixes: cb261b5 ("bpf: Run devmap xdp_prog on flush instead of bulk enqueue")
Reviewed-by: Toke Høiland-Jørgensen <[email protected]>
Signed-off-by: Florian Kauer <[email protected]>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Sep 24, 2024
rxq contains a pointer to the device from where
the redirect happened. Currently, the BPF program
that was executed after a redirect via BPF_MAP_TYPE_DEVMAP*
does not have it set.

This is particularly bad since accessing ingress_ifindex, e.g.

SEC("xdp")
int prog(struct xdp_md *pkt)
{
        return bpf_redirect_map(&dev_redirect_map, 0, 0);
}

SEC("xdp/devmap")
int prog_after_redirect(struct xdp_md *pkt)
{
        bpf_printk("ifindex %i", pkt->ingress_ifindex);
        return XDP_PASS;
}

depends on access to rxq, so a NULL pointer gets dereferenced:

<1>[  574.475170] BUG: kernel NULL pointer dereference, address: 0000000000000000
<1>[  574.475188] #PF: supervisor read access in kernel mode
<1>[  574.475194] #PF: error_code(0x0000) - not-present page
<6>[  574.475199] PGD 0 P4D 0
<4>[  574.475207] Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI
<4>[  574.475217] CPU: 4 UID: 0 PID: 217 Comm: kworker/4:1 Not tainted 6.11.0-rc5-reduced-00859-g780801200300 #23
<4>[  574.475226] Hardware name: Intel(R) Client Systems NUC13ANHi7/NUC13ANBi7, BIOS ANRPL357.0026.2023.0314.1458 03/14/2023
<4>[  574.475231] Workqueue: mld mld_ifc_work
<4>[  574.475247] RIP: 0010:bpf_prog_5e13354d9cf5018a_prog_after_redirect+0x17/0x3c
<4>[  574.475257] Code: cc cc cc cc cc cc cc 80 00 00 00 cc cc cc cc cc cc cc cc f3 0f 1e fa 0f 1f 44 00 00 66 90 55 48 89 e5 f3 0f 1e fa 48 8b 57 20 <48> 8b 52 00 8b 92 e0 00 00 00 48 bf f8 a6 d5 c4 5d a0 ff ff be 0b
<4>[  574.475263] RSP: 0018:ffffa62440280c98 EFLAGS: 00010206
<4>[  574.475269] RAX: ffffa62440280cd8 RBX: 0000000000000001 RCX: 0000000000000000
<4>[  574.475274] RDX: 0000000000000000 RSI: ffffa62440549048 RDI: ffffa62440280ce0
<4>[  574.475278] RBP: ffffa62440280c98 R08: 0000000000000002 R09: 0000000000000001
<4>[  574.475281] R10: ffffa05dc8b98000 R11: ffffa05f577fca40 R12: ffffa05dcab24000
<4>[  574.475285] R13: ffffa62440280ce0 R14: ffffa62440549048 R15: ffffa62440549000
<4>[  574.475289] FS:  0000000000000000(0000) GS:ffffa05f4f700000(0000) knlGS:0000000000000000
<4>[  574.475294] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
<4>[  574.475298] CR2: 0000000000000000 CR3: 000000025522e000 CR4: 0000000000f50ef0
<4>[  574.475303] PKRU: 55555554
<4>[  574.475306] Call Trace:
<4>[  574.475313]  <IRQ>
<4>[  574.475318]  ? __die+0x23/0x70
<4>[  574.475329]  ? page_fault_oops+0x180/0x4c0
<4>[  574.475339]  ? skb_pp_cow_data+0x34c/0x490
<4>[  574.475346]  ? kmem_cache_free+0x257/0x280
<4>[  574.475357]  ? exc_page_fault+0x67/0x150
<4>[  574.475368]  ? asm_exc_page_fault+0x26/0x30
<4>[  574.475381]  ? bpf_prog_5e13354d9cf5018a_prog_after_redirect+0x17/0x3c
<4>[  574.475386]  bq_xmit_all+0x158/0x420
<4>[  574.475397]  __dev_flush+0x30/0x90
<4>[  574.475407]  veth_poll+0x216/0x250 [veth]
<4>[  574.475421]  __napi_poll+0x28/0x1c0
<4>[  574.475430]  net_rx_action+0x32d/0x3a0
<4>[  574.475441]  handle_softirqs+0xcb/0x2c0
<4>[  574.475451]  do_softirq+0x40/0x60
<4>[  574.475458]  </IRQ>
<4>[  574.475461]  <TASK>
<4>[  574.475464]  __local_bh_enable_ip+0x66/0x70
<4>[  574.475471]  __dev_queue_xmit+0x268/0xe40
<4>[  574.475480]  ? selinux_ip_postroute+0x213/0x420
<4>[  574.475491]  ? alloc_skb_with_frags+0x4a/0x1d0
<4>[  574.475502]  ip6_finish_output2+0x2be/0x640
<4>[  574.475512]  ? nf_hook_slow+0x42/0xf0
<4>[  574.475521]  ip6_finish_output+0x194/0x300
<4>[  574.475529]  ? __pfx_ip6_finish_output+0x10/0x10
<4>[  574.475538]  mld_sendpack+0x17c/0x240
<4>[  574.475548]  mld_ifc_work+0x192/0x410
<4>[  574.475557]  process_one_work+0x15d/0x380
<4>[  574.475566]  worker_thread+0x29d/0x3a0
<4>[  574.475573]  ? __pfx_worker_thread+0x10/0x10
<4>[  574.475580]  ? __pfx_worker_thread+0x10/0x10
<4>[  574.475587]  kthread+0xcd/0x100
<4>[  574.475597]  ? __pfx_kthread+0x10/0x10
<4>[  574.475606]  ret_from_fork+0x31/0x50
<4>[  574.475615]  ? __pfx_kthread+0x10/0x10
<4>[  574.475623]  ret_from_fork_asm+0x1a/0x30
<4>[  574.475635]  </TASK>
<4>[  574.475637] Modules linked in: veth br_netfilter bridge stp llc iwlmvm x86_pkg_temp_thermal iwlwifi efivarfs nvme nvme_core
<4>[  574.475662] CR2: 0000000000000000
<4>[  574.475668] ---[ end trace 0000000000000000 ]---

Therefore, provide it to the program by setting rxq properly.

Fixes: cb261b5 ("bpf: Run devmap xdp_prog on flush instead of bulk enqueue")
Reviewed-by: Toke Høiland-Jørgensen <[email protected]>
Signed-off-by: Florian Kauer <[email protected]>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Sep 25, 2024
rxq contains a pointer to the device from where
the redirect happened. Currently, the BPF program
that was executed after a redirect via BPF_MAP_TYPE_DEVMAP*
does not have it set.

This is particularly bad since accessing ingress_ifindex, e.g.

SEC("xdp")
int prog(struct xdp_md *pkt)
{
        return bpf_redirect_map(&dev_redirect_map, 0, 0);
}

SEC("xdp/devmap")
int prog_after_redirect(struct xdp_md *pkt)
{
        bpf_printk("ifindex %i", pkt->ingress_ifindex);
        return XDP_PASS;
}

depends on access to rxq, so a NULL pointer gets dereferenced:

<1>[  574.475170] BUG: kernel NULL pointer dereference, address: 0000000000000000
<1>[  574.475188] #PF: supervisor read access in kernel mode
<1>[  574.475194] #PF: error_code(0x0000) - not-present page
<6>[  574.475199] PGD 0 P4D 0
<4>[  574.475207] Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI
<4>[  574.475217] CPU: 4 UID: 0 PID: 217 Comm: kworker/4:1 Not tainted 6.11.0-rc5-reduced-00859-g780801200300 #23
<4>[  574.475226] Hardware name: Intel(R) Client Systems NUC13ANHi7/NUC13ANBi7, BIOS ANRPL357.0026.2023.0314.1458 03/14/2023
<4>[  574.475231] Workqueue: mld mld_ifc_work
<4>[  574.475247] RIP: 0010:bpf_prog_5e13354d9cf5018a_prog_after_redirect+0x17/0x3c
<4>[  574.475257] Code: cc cc cc cc cc cc cc 80 00 00 00 cc cc cc cc cc cc cc cc f3 0f 1e fa 0f 1f 44 00 00 66 90 55 48 89 e5 f3 0f 1e fa 48 8b 57 20 <48> 8b 52 00 8b 92 e0 00 00 00 48 bf f8 a6 d5 c4 5d a0 ff ff be 0b
<4>[  574.475263] RSP: 0018:ffffa62440280c98 EFLAGS: 00010206
<4>[  574.475269] RAX: ffffa62440280cd8 RBX: 0000000000000001 RCX: 0000000000000000
<4>[  574.475274] RDX: 0000000000000000 RSI: ffffa62440549048 RDI: ffffa62440280ce0
<4>[  574.475278] RBP: ffffa62440280c98 R08: 0000000000000002 R09: 0000000000000001
<4>[  574.475281] R10: ffffa05dc8b98000 R11: ffffa05f577fca40 R12: ffffa05dcab24000
<4>[  574.475285] R13: ffffa62440280ce0 R14: ffffa62440549048 R15: ffffa62440549000
<4>[  574.475289] FS:  0000000000000000(0000) GS:ffffa05f4f700000(0000) knlGS:0000000000000000
<4>[  574.475294] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
<4>[  574.475298] CR2: 0000000000000000 CR3: 000000025522e000 CR4: 0000000000f50ef0
<4>[  574.475303] PKRU: 55555554
<4>[  574.475306] Call Trace:
<4>[  574.475313]  <IRQ>
<4>[  574.475318]  ? __die+0x23/0x70
<4>[  574.475329]  ? page_fault_oops+0x180/0x4c0
<4>[  574.475339]  ? skb_pp_cow_data+0x34c/0x490
<4>[  574.475346]  ? kmem_cache_free+0x257/0x280
<4>[  574.475357]  ? exc_page_fault+0x67/0x150
<4>[  574.475368]  ? asm_exc_page_fault+0x26/0x30
<4>[  574.475381]  ? bpf_prog_5e13354d9cf5018a_prog_after_redirect+0x17/0x3c
<4>[  574.475386]  bq_xmit_all+0x158/0x420
<4>[  574.475397]  __dev_flush+0x30/0x90
<4>[  574.475407]  veth_poll+0x216/0x250 [veth]
<4>[  574.475421]  __napi_poll+0x28/0x1c0
<4>[  574.475430]  net_rx_action+0x32d/0x3a0
<4>[  574.475441]  handle_softirqs+0xcb/0x2c0
<4>[  574.475451]  do_softirq+0x40/0x60
<4>[  574.475458]  </IRQ>
<4>[  574.475461]  <TASK>
<4>[  574.475464]  __local_bh_enable_ip+0x66/0x70
<4>[  574.475471]  __dev_queue_xmit+0x268/0xe40
<4>[  574.475480]  ? selinux_ip_postroute+0x213/0x420
<4>[  574.475491]  ? alloc_skb_with_frags+0x4a/0x1d0
<4>[  574.475502]  ip6_finish_output2+0x2be/0x640
<4>[  574.475512]  ? nf_hook_slow+0x42/0xf0
<4>[  574.475521]  ip6_finish_output+0x194/0x300
<4>[  574.475529]  ? __pfx_ip6_finish_output+0x10/0x10
<4>[  574.475538]  mld_sendpack+0x17c/0x240
<4>[  574.475548]  mld_ifc_work+0x192/0x410
<4>[  574.475557]  process_one_work+0x15d/0x380
<4>[  574.475566]  worker_thread+0x29d/0x3a0
<4>[  574.475573]  ? __pfx_worker_thread+0x10/0x10
<4>[  574.475580]  ? __pfx_worker_thread+0x10/0x10
<4>[  574.475587]  kthread+0xcd/0x100
<4>[  574.475597]  ? __pfx_kthread+0x10/0x10
<4>[  574.475606]  ret_from_fork+0x31/0x50
<4>[  574.475615]  ? __pfx_kthread+0x10/0x10
<4>[  574.475623]  ret_from_fork_asm+0x1a/0x30
<4>[  574.475635]  </TASK>
<4>[  574.475637] Modules linked in: veth br_netfilter bridge stp llc iwlmvm x86_pkg_temp_thermal iwlwifi efivarfs nvme nvme_core
<4>[  574.475662] CR2: 0000000000000000
<4>[  574.475668] ---[ end trace 0000000000000000 ]---

Therefore, provide it to the program by setting rxq properly.

Fixes: cb261b5 ("bpf: Run devmap xdp_prog on flush instead of bulk enqueue")
Reviewed-by: Toke Høiland-Jørgensen <[email protected]>
Signed-off-by: Florian Kauer <[email protected]>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Oct 2, 2024
rxq contains a pointer to the device from where
the redirect happened. Currently, the BPF program
that was executed after a redirect via BPF_MAP_TYPE_DEVMAP*
does not have it set.

This is particularly bad since accessing ingress_ifindex, e.g.

SEC("xdp")
int prog(struct xdp_md *pkt)
{
        return bpf_redirect_map(&dev_redirect_map, 0, 0);
}

SEC("xdp/devmap")
int prog_after_redirect(struct xdp_md *pkt)
{
        bpf_printk("ifindex %i", pkt->ingress_ifindex);
        return XDP_PASS;
}

depends on access to rxq, so a NULL pointer gets dereferenced:

<1>[  574.475170] BUG: kernel NULL pointer dereference, address: 0000000000000000
<1>[  574.475188] #PF: supervisor read access in kernel mode
<1>[  574.475194] #PF: error_code(0x0000) - not-present page
<6>[  574.475199] PGD 0 P4D 0
<4>[  574.475207] Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI
<4>[  574.475217] CPU: 4 UID: 0 PID: 217 Comm: kworker/4:1 Not tainted 6.11.0-rc5-reduced-00859-g780801200300 #23
<4>[  574.475226] Hardware name: Intel(R) Client Systems NUC13ANHi7/NUC13ANBi7, BIOS ANRPL357.0026.2023.0314.1458 03/14/2023
<4>[  574.475231] Workqueue: mld mld_ifc_work
<4>[  574.475247] RIP: 0010:bpf_prog_5e13354d9cf5018a_prog_after_redirect+0x17/0x3c
<4>[  574.475257] Code: cc cc cc cc cc cc cc 80 00 00 00 cc cc cc cc cc cc cc cc f3 0f 1e fa 0f 1f 44 00 00 66 90 55 48 89 e5 f3 0f 1e fa 48 8b 57 20 <48> 8b 52 00 8b 92 e0 00 00 00 48 bf f8 a6 d5 c4 5d a0 ff ff be 0b
<4>[  574.475263] RSP: 0018:ffffa62440280c98 EFLAGS: 00010206
<4>[  574.475269] RAX: ffffa62440280cd8 RBX: 0000000000000001 RCX: 0000000000000000
<4>[  574.475274] RDX: 0000000000000000 RSI: ffffa62440549048 RDI: ffffa62440280ce0
<4>[  574.475278] RBP: ffffa62440280c98 R08: 0000000000000002 R09: 0000000000000001
<4>[  574.475281] R10: ffffa05dc8b98000 R11: ffffa05f577fca40 R12: ffffa05dcab24000
<4>[  574.475285] R13: ffffa62440280ce0 R14: ffffa62440549048 R15: ffffa62440549000
<4>[  574.475289] FS:  0000000000000000(0000) GS:ffffa05f4f700000(0000) knlGS:0000000000000000
<4>[  574.475294] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
<4>[  574.475298] CR2: 0000000000000000 CR3: 000000025522e000 CR4: 0000000000f50ef0
<4>[  574.475303] PKRU: 55555554
<4>[  574.475306] Call Trace:
<4>[  574.475313]  <IRQ>
<4>[  574.475318]  ? __die+0x23/0x70
<4>[  574.475329]  ? page_fault_oops+0x180/0x4c0
<4>[  574.475339]  ? skb_pp_cow_data+0x34c/0x490
<4>[  574.475346]  ? kmem_cache_free+0x257/0x280
<4>[  574.475357]  ? exc_page_fault+0x67/0x150
<4>[  574.475368]  ? asm_exc_page_fault+0x26/0x30
<4>[  574.475381]  ? bpf_prog_5e13354d9cf5018a_prog_after_redirect+0x17/0x3c
<4>[  574.475386]  bq_xmit_all+0x158/0x420
<4>[  574.475397]  __dev_flush+0x30/0x90
<4>[  574.475407]  veth_poll+0x216/0x250 [veth]
<4>[  574.475421]  __napi_poll+0x28/0x1c0
<4>[  574.475430]  net_rx_action+0x32d/0x3a0
<4>[  574.475441]  handle_softirqs+0xcb/0x2c0
<4>[  574.475451]  do_softirq+0x40/0x60
<4>[  574.475458]  </IRQ>
<4>[  574.475461]  <TASK>
<4>[  574.475464]  __local_bh_enable_ip+0x66/0x70
<4>[  574.475471]  __dev_queue_xmit+0x268/0xe40
<4>[  574.475480]  ? selinux_ip_postroute+0x213/0x420
<4>[  574.475491]  ? alloc_skb_with_frags+0x4a/0x1d0
<4>[  574.475502]  ip6_finish_output2+0x2be/0x640
<4>[  574.475512]  ? nf_hook_slow+0x42/0xf0
<4>[  574.475521]  ip6_finish_output+0x194/0x300
<4>[  574.475529]  ? __pfx_ip6_finish_output+0x10/0x10
<4>[  574.475538]  mld_sendpack+0x17c/0x240
<4>[  574.475548]  mld_ifc_work+0x192/0x410
<4>[  574.475557]  process_one_work+0x15d/0x380
<4>[  574.475566]  worker_thread+0x29d/0x3a0
<4>[  574.475573]  ? __pfx_worker_thread+0x10/0x10
<4>[  574.475580]  ? __pfx_worker_thread+0x10/0x10
<4>[  574.475587]  kthread+0xcd/0x100
<4>[  574.475597]  ? __pfx_kthread+0x10/0x10
<4>[  574.475606]  ret_from_fork+0x31/0x50
<4>[  574.475615]  ? __pfx_kthread+0x10/0x10
<4>[  574.475623]  ret_from_fork_asm+0x1a/0x30
<4>[  574.475635]  </TASK>
<4>[  574.475637] Modules linked in: veth br_netfilter bridge stp llc iwlmvm x86_pkg_temp_thermal iwlwifi efivarfs nvme nvme_core
<4>[  574.475662] CR2: 0000000000000000
<4>[  574.475668] ---[ end trace 0000000000000000 ]---

Therefore, provide it to the program by setting rxq properly.

Fixes: cb261b5 ("bpf: Run devmap xdp_prog on flush instead of bulk enqueue")
Reviewed-by: Toke Høiland-Jørgensen <[email protected]>
Signed-off-by: Florian Kauer <[email protected]>
Acked-by: Jakub Kicinski <[email protected]>
Link: https://lore.kernel.org/r/20240911-devel-koalo-fix-ingress-ifindex-v4-1-5c643ae10258@linutronix.de
Signed-off-by: Martin KaFai Lau <[email protected]>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Dec 6, 2024
Under certain kernel configurations when building with Clang/LLVM, the
compiler does not generate a return or jump as the terminator
instruction for ip_vs_protocol_init(), triggering the following objtool
warning during build time:

  vmlinux.o: warning: objtool: ip_vs_protocol_init() falls through to next function __initstub__kmod_ip_vs_rr__935_123_ip_vs_rr_init6()

At runtime, this either causes an oops when trying to load the ipvs
module or a boot-time panic if ipvs is built-in. This same issue has
been reported by the Intel kernel test robot previously.

Digging deeper into both LLVM and the kernel code reveals this to be a
undefined behavior problem. ip_vs_protocol_init() uses a on-stack buffer
of 64 chars to store the registered protocol names and leaves it
uninitialized after definition. The function calls strnlen() when
concatenating protocol names into the buffer. With CONFIG_FORTIFY_SOURCE
strnlen() performs an extra step to check whether the last byte of the
input char buffer is a null character (commit 3009f89 ("fortify:
Allow strlen() and strnlen() to pass compile-time known lengths")).
This, together with possibly other configurations, cause the following
IR to be generated:

  define hidden i32 @ip_vs_protocol_init() local_unnamed_addr #5 section ".init.text" align 16 !kcfi_type !29 {
    %1 = alloca [64 x i8], align 16
    ...

  14:                                               ; preds = %11
    %15 = getelementptr inbounds i8, ptr %1, i64 63
    %16 = load i8, ptr %15, align 1
    %17 = tail call i1 @llvm.is.constant.i8(i8 %16)
    %18 = icmp eq i8 %16, 0
    %19 = select i1 %17, i1 %18, i1 false
    br i1 %19, label %20, label %23

  20:                                               ; preds = %14
    %21 = call i64 @strlen(ptr noundef nonnull dereferenceable(1) %1) #23
    ...

  23:                                               ; preds = %14, %11, %20
    %24 = call i64 @strnlen(ptr noundef nonnull dereferenceable(1) %1, i64 noundef 64) #24
    ...
  }

The above code calculates the address of the last char in the buffer
(value %15) and then loads from it (value %16). Because the buffer is
never initialized, the LLVM GVN pass marks value %16 as undefined:

  %13 = getelementptr inbounds i8, ptr %1, i64 63
  br i1 undef, label %14, label %17

This gives later passes (SCCP, in particular) more DCE opportunities by
propagating the undef value further, and eventually removes everything
after the load on the uninitialized stack location:

  define hidden i32 @ip_vs_protocol_init() local_unnamed_addr #0 section ".init.text" align 16 !kcfi_type !11 {
    %1 = alloca [64 x i8], align 16
    ...

  12:                                               ; preds = %11
    %13 = getelementptr inbounds i8, ptr %1, i64 63
    unreachable
  }

In this way, the generated native code will just fall through to the
next function, as LLVM does not generate any code for the unreachable IR
instruction and leaves the function without a terminator.

Zero the on-stack buffer to avoid this possible UB.

Fixes: 1da177e ("Linux-2.6.12-rc2")
Reported-by: kernel test robot <[email protected]>
Closes: https://lore.kernel.org/oe-kbuild-all/[email protected]/
Co-developed-by: Ruowen Qin <[email protected]>
Signed-off-by: Ruowen Qin <[email protected]>
Signed-off-by: Jinghao Jia <[email protected]>
Acked-by: Julian Anastasov <[email protected]>
Signed-off-by: Pablo Neira Ayuso <[email protected]>
kernel-patches-daemon-bpf-rc bot pushed a commit that referenced this pull request Jan 13, 2025
When executing 'echo mem > /sys/power/state', the following
deadlock occurs. Since there is output during the serial
port entering the suspend process, the suspend will be
interrupted, resulting in the nesting of locks. Therefore,
use uart_port_lock_irq() instead of uart_port_unlock().

WARNING: inconsistent lock state
6.12.0-rc2-00002-g3c199ed5bd64-dirty #23 Not tainted
--------------------------------
inconsistent {IN-HARDIRQ-W} -> {HARDIRQ-ON-W} usage.
sh/494 [HC0[0]:SC0[0]:HE1:SE1] takes:
c4db5850 (&port_lock_key){?.-.}-{3:3}, at: imx_uart_enable_wakeup+0x14/0x254
{IN-HARDIRQ-W} state was registered at:
  lock_acquire+0x104/0x348
  _raw_spin_lock+0x48/0x84
  imx_uart_int+0x14/0x4dc
  __handle_irq_event_percpu+0xac/0x2fc
  handle_irq_event_percpu+0xc/0x40
  handle_irq_event+0x38/0x8c
  handle_fasteoi_irq+0xb4/0x1b8
  handle_irq_desc+0x1c/0x2c
  gic_handle_irq+0x6c/0xa0
  generic_handle_arch_irq+0x2c/0x64
  call_with_stack+0x18/0x20
  __irq_svc+0x9c/0xbc
  _raw_spin_unlock_irqrestore+0x2c/0x48
  uart_write+0xd8/0x3a0
  do_output_char+0x1a8/0x1e4
  n_tty_write+0x224/0x440
  file_tty_write.constprop.0+0x124/0x250
  do_iter_readv_writev+0x100/0x1e0
  vfs_writev+0xc4/0x448
  do_writev+0x68/0xf8
  ret_fast_syscall+0x0/0x1c
irq event stamp: 31593
hardirqs last  enabled at (31593): [<c1150e48>] _raw_spin_unlock_irqrestore+0x44/0x48
hardirqs last disabled at (31592): [<c07f32f0>] clk_enable_lock+0x60/0x120
softirqs last  enabled at (30334): [<c012d1d4>] handle_softirqs+0x2cc/0x478
softirqs last disabled at (30325): [<c012d510>] __irq_exit_rcu+0x120/0x15c

other info that might help us debug this:
 Possible unsafe locking scenario:

       CPU0
       ----
  lock(&port_lock_key);
  <Interrupt>
    lock(&port_lock_key);

Fixes: 3c199ed ("serial: imx: Grab port lock in imx_uart_enable_wakeup()")
Signed-off-by: Xiaolei Wang <[email protected]>
Reviewed-by: Lucas Stach <[email protected]>
Reviewed-by: Fabio Estevam <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Greg Kroah-Hartman <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant