Skip to content

Added CPU/CUDA and batch input for dtype conversion op #2755

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 13 additions & 0 deletions test/common_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -369,3 +369,16 @@ def approxEqualTensorToPIL(self, tensor, pil_image, tol=1e-5, msg=None, agg_meth
err < tol,
msg="{}: err={}, tol={}: \n{}\nvs\n{}".format(msg, err, tol, tensor[0, :10, :10], pil_tensor[0, :10, :10])
)


def cycle_over(objs):
for idx, obj in enumerate(objs):
yield obj, objs[:idx] + objs[idx + 1:]


def int_dtypes():
return torch.testing.integral_types()


def float_dtypes():
return torch.testing.floating_types()
19 changes: 3 additions & 16 deletions test/test_transforms.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,24 +20,11 @@
except ImportError:
stats = None

GRACE_HOPPER = get_file_path_2(
os.path.dirname(os.path.abspath(__file__)), 'assets', 'grace_hopper_517x606.jpg')


def cycle_over(objs):
objs = list(objs)
for idx, obj in enumerate(objs):
yield obj, objs[:idx] + objs[idx + 1:]
from common_utils import cycle_over, int_dtypes, float_dtypes


def int_dtypes():
yield from iter(
(torch.uint8, torch.int8, torch.int16, torch.short, torch.int32, torch.int, torch.int64, torch.long,)
)


def float_dtypes():
yield from iter((torch.float32, torch.float, torch.float64, torch.double))
GRACE_HOPPER = get_file_path_2(
os.path.dirname(os.path.abspath(__file__)), 'assets', 'grace_hopper_517x606.jpg')


class Tester(unittest.TestCase):
Expand Down
38 changes: 32 additions & 6 deletions test/test_transforms_tensor.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@

import unittest

from common_utils import TransformsTester, get_tmp_dir
from common_utils import TransformsTester, get_tmp_dir, int_dtypes, float_dtypes


class Tester(TransformsTester):
Expand All @@ -27,26 +27,26 @@ def _test_functional_op(self, func, fn_kwargs):
transformed_pil_img = f(pil_img, **fn_kwargs)
self.compareTensorToPIL(transformed_tensor, transformed_pil_img)

def _test_transform_vs_scripted(self, transform, s_transform, tensor):
def _test_transform_vs_scripted(self, transform, s_transform, tensor, msg=None):
torch.manual_seed(12)
out1 = transform(tensor)
torch.manual_seed(12)
out2 = s_transform(tensor)
self.assertTrue(out1.equal(out2))
self.assertTrue(out1.equal(out2), msg=msg)

def _test_transform_vs_scripted_on_batch(self, transform, s_transform, batch_tensors):
def _test_transform_vs_scripted_on_batch(self, transform, s_transform, batch_tensors, msg=None):
torch.manual_seed(12)
transformed_batch = transform(batch_tensors)

for i in range(len(batch_tensors)):
img_tensor = batch_tensors[i, ...]
torch.manual_seed(12)
transformed_img = transform(img_tensor)
self.assertTrue(transformed_img.equal(transformed_batch[i, ...]))
self.assertTrue(transformed_img.equal(transformed_batch[i, ...]), msg=msg)

torch.manual_seed(12)
s_transformed_batch = s_transform(batch_tensors)
self.assertTrue(transformed_batch.equal(s_transformed_batch))
self.assertTrue(transformed_batch.equal(s_transformed_batch), msg=msg)

def _test_class_op(self, method, meth_kwargs=None, test_exact_match=True, **match_kwargs):
if meth_kwargs is None:
Expand Down Expand Up @@ -492,6 +492,32 @@ def test_random_erasing(self):
self._test_transform_vs_scripted(fn, scripted_fn, tensor)
self._test_transform_vs_scripted_on_batch(fn, scripted_fn, batch_tensors)

def test_convert_image_dtype(self):
tensor, _ = self._create_data(26, 34, device=self.device)
batch_tensors = torch.rand(4, 3, 44, 56, device=self.device)

for in_dtype in int_dtypes() + float_dtypes():
in_tensor = tensor.to(in_dtype)
in_batch_tensors = batch_tensors.to(in_dtype)
for out_dtype in int_dtypes() + float_dtypes():

fn = T.ConvertImageDtype(dtype=out_dtype)
scripted_fn = torch.jit.script(fn)

if (in_dtype == torch.float32 and out_dtype in (torch.int32, torch.int64)) or \
(in_dtype == torch.float64 and out_dtype == torch.int64):
with self.assertRaisesRegex(RuntimeError, r"cannot be performed safely"):
self._test_transform_vs_scripted(fn, scripted_fn, in_tensor)
with self.assertRaisesRegex(RuntimeError, r"cannot be performed safely"):
self._test_transform_vs_scripted_on_batch(fn, scripted_fn, in_batch_tensors)
continue

self._test_transform_vs_scripted(fn, scripted_fn, in_tensor)
self._test_transform_vs_scripted_on_batch(fn, scripted_fn, in_batch_tensors)

with get_tmp_dir() as tmp_dir:
scripted_fn.save(os.path.join(tmp_dir, "t_convert_dtype.pt"))


@unittest.skipIf(not torch.cuda.is_available(), reason="Skip if no CUDA device")
class CUDATester(Tester):
Expand Down