Skip to content

Port normalize, linear_transformation, compose, random_apply, gaussian_blur to pytest #4023

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
247 changes: 120 additions & 127 deletions test/test_transforms_tensor.py
Original file line number Diff line number Diff line change
Expand Up @@ -143,133 +143,6 @@ def test_random_autocontrast(self):
def test_random_equalize(self):
_test_op(F.equalize, T.RandomEqualize, device=self.device)

def test_normalize(self):
fn = T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
tensor, _ = _create_data(26, 34, device=self.device)

with self.assertRaisesRegex(TypeError, r"Input tensor should be a float tensor"):
fn(tensor)

batch_tensors = torch.rand(4, 3, 44, 56, device=self.device)
tensor = tensor.to(dtype=torch.float32) / 255.0
# test for class interface
scripted_fn = torch.jit.script(fn)

_test_transform_vs_scripted(fn, scripted_fn, tensor)
_test_transform_vs_scripted_on_batch(fn, scripted_fn, batch_tensors)

with get_tmp_dir() as tmp_dir:
scripted_fn.save(os.path.join(tmp_dir, "t_norm.pt"))

def test_linear_transformation(self):
c, h, w = 3, 24, 32

tensor, _ = _create_data(h, w, channels=c, device=self.device)

matrix = torch.rand(c * h * w, c * h * w, device=self.device)
mean_vector = torch.rand(c * h * w, device=self.device)

fn = T.LinearTransformation(matrix, mean_vector)
scripted_fn = torch.jit.script(fn)

_test_transform_vs_scripted(fn, scripted_fn, tensor)

batch_tensors = torch.rand(4, c, h, w, device=self.device)
# We skip some tests from _test_transform_vs_scripted_on_batch as
# results for scripted and non-scripted transformations are not exactly the same
torch.manual_seed(12)
transformed_batch = fn(batch_tensors)
torch.manual_seed(12)
s_transformed_batch = scripted_fn(batch_tensors)
assert_equal(transformed_batch, s_transformed_batch)

with get_tmp_dir() as tmp_dir:
scripted_fn.save(os.path.join(tmp_dir, "t_norm.pt"))

def test_compose(self):
tensor, _ = _create_data(26, 34, device=self.device)
tensor = tensor.to(dtype=torch.float32) / 255.0

transforms = T.Compose([
T.CenterCrop(10),
T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
])
s_transforms = torch.nn.Sequential(*transforms.transforms)

scripted_fn = torch.jit.script(s_transforms)
torch.manual_seed(12)
transformed_tensor = transforms(tensor)
torch.manual_seed(12)
transformed_tensor_script = scripted_fn(tensor)
assert_equal(transformed_tensor, transformed_tensor_script, msg="{}".format(transforms))

t = T.Compose([
lambda x: x,
])
with self.assertRaisesRegex(RuntimeError, r"Could not get name of python class object"):
torch.jit.script(t)

def test_random_apply(self):
tensor, _ = _create_data(26, 34, device=self.device)
tensor = tensor.to(dtype=torch.float32) / 255.0

transforms = T.RandomApply([
T.RandomHorizontalFlip(),
T.ColorJitter(),
], p=0.4)
s_transforms = T.RandomApply(torch.nn.ModuleList([
T.RandomHorizontalFlip(),
T.ColorJitter(),
]), p=0.4)

scripted_fn = torch.jit.script(s_transforms)
torch.manual_seed(12)
transformed_tensor = transforms(tensor)
torch.manual_seed(12)
transformed_tensor_script = scripted_fn(tensor)
assert_equal(transformed_tensor, transformed_tensor_script, msg="{}".format(transforms))

if torch.device(self.device).type == "cpu":
# Can't check this twice, otherwise
# "Can't redefine method: forward on class: __torch__.torchvision.transforms.transforms.RandomApply"
transforms = T.RandomApply([
T.ColorJitter(),
], p=0.3)
with self.assertRaisesRegex(RuntimeError, r"Module 'RandomApply' has no attribute 'transforms'"):
torch.jit.script(transforms)

def test_gaussian_blur(self):
tol = 1.0 + 1e-10
_test_class_op(
T.GaussianBlur, meth_kwargs={"kernel_size": 3, "sigma": 0.75},
test_exact_match=False, device=self.device, agg_method="max", tol=tol
)

_test_class_op(
T.GaussianBlur, meth_kwargs={"kernel_size": 23, "sigma": [0.1, 2.0]},
test_exact_match=False, device=self.device, agg_method="max", tol=tol
)

_test_class_op(
T.GaussianBlur, meth_kwargs={"kernel_size": 23, "sigma": (0.1, 2.0)},
test_exact_match=False, device=self.device, agg_method="max", tol=tol
)

_test_class_op(
T.GaussianBlur, meth_kwargs={"kernel_size": [3, 3], "sigma": (1.0, 1.0)},
test_exact_match=False, device=self.device, agg_method="max", tol=tol
)

_test_class_op(
T.GaussianBlur, meth_kwargs={"kernel_size": (3, 3), "sigma": (0.1, 2.0)},
test_exact_match=False, device=self.device, agg_method="max", tol=tol
)

_test_class_op(
T.GaussianBlur, meth_kwargs={"kernel_size": [23], "sigma": 0.75},
test_exact_match=False, device=self.device, agg_method="max", tol=tol
)

def test_random_erasing(self):
img = torch.rand(3, 60, 60)

Expand Down Expand Up @@ -735,5 +608,125 @@ def test_to_grayscale(device, Klass, meth_kwargs):
)


@pytest.mark.parametrize('device', cpu_and_gpu())
def test_normalize(device):
fn = T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
tensor, _ = _create_data(26, 34, device=device)

with pytest.raises(TypeError, match="Input tensor should be a float tensor"):
fn(tensor)

batch_tensors = torch.rand(4, 3, 44, 56, device=device)
tensor = tensor.to(dtype=torch.float32) / 255.0
# test for class interface
scripted_fn = torch.jit.script(fn)

_test_transform_vs_scripted(fn, scripted_fn, tensor)
_test_transform_vs_scripted_on_batch(fn, scripted_fn, batch_tensors)

with get_tmp_dir() as tmp_dir:
scripted_fn.save(os.path.join(tmp_dir, "t_norm.pt"))


@pytest.mark.parametrize('device', cpu_and_gpu())
def test_linear_transformation(device):
c, h, w = 3, 24, 32

tensor, _ = _create_data(h, w, channels=c, device=device)

matrix = torch.rand(c * h * w, c * h * w, device=device)
mean_vector = torch.rand(c * h * w, device=device)

fn = T.LinearTransformation(matrix, mean_vector)
scripted_fn = torch.jit.script(fn)

_test_transform_vs_scripted(fn, scripted_fn, tensor)

batch_tensors = torch.rand(4, c, h, w, device=device)
# We skip some tests from _test_transform_vs_scripted_on_batch as
# results for scripted and non-scripted transformations are not exactly the same
torch.manual_seed(12)
transformed_batch = fn(batch_tensors)
torch.manual_seed(12)
s_transformed_batch = scripted_fn(batch_tensors)
assert_equal(transformed_batch, s_transformed_batch)

with get_tmp_dir() as tmp_dir:
scripted_fn.save(os.path.join(tmp_dir, "t_norm.pt"))


@pytest.mark.parametrize('device', cpu_and_gpu())
def test_compose(device):
tensor, _ = _create_data(26, 34, device=device)
tensor = tensor.to(dtype=torch.float32) / 255.0

transforms = T.Compose([
T.CenterCrop(10),
T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
])
s_transforms = torch.nn.Sequential(*transforms.transforms)

scripted_fn = torch.jit.script(s_transforms)
torch.manual_seed(12)
transformed_tensor = transforms(tensor)
torch.manual_seed(12)
transformed_tensor_script = scripted_fn(tensor)
assert_equal(transformed_tensor, transformed_tensor_script, msg="{}".format(transforms))

t = T.Compose([
lambda x: x,
])
with pytest.raises(RuntimeError, match="Could not get name of python class object"):
torch.jit.script(t)


@pytest.mark.parametrize('device', cpu_and_gpu())
def test_random_apply(device):
tensor, _ = _create_data(26, 34, device=device)
tensor = tensor.to(dtype=torch.float32) / 255.0

transforms = T.RandomApply([
T.RandomHorizontalFlip(),
T.ColorJitter(),
], p=0.4)
s_transforms = T.RandomApply(torch.nn.ModuleList([
T.RandomHorizontalFlip(),
T.ColorJitter(),
]), p=0.4)

scripted_fn = torch.jit.script(s_transforms)
torch.manual_seed(12)
transformed_tensor = transforms(tensor)
torch.manual_seed(12)
transformed_tensor_script = scripted_fn(tensor)
assert_equal(transformed_tensor, transformed_tensor_script, msg="{}".format(transforms))

if device == "cpu":
# Can't check this twice, otherwise
# "Can't redefine method: forward on class: __torch__.torchvision.transforms.transforms.RandomApply"
transforms = T.RandomApply([
T.ColorJitter(),
], p=0.3)
with pytest.raises(RuntimeError, match="Module 'RandomApply' has no attribute 'transforms'"):
torch.jit.script(transforms)


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('meth_kwargs', [
{"kernel_size": 3, "sigma": 0.75},
{"kernel_size": 23, "sigma": [0.1, 2.0]},
{"kernel_size": 23, "sigma": (0.1, 2.0)},
{"kernel_size": [3, 3], "sigma": (1.0, 1.0)},
{"kernel_size": (3, 3), "sigma": (0.1, 2.0)},
{"kernel_size": [23], "sigma": 0.75}
])
def test_gaussian_blur(device, meth_kwargs):
tol = 1.0 + 1e-10
_test_class_op(
T.GaussianBlur, meth_kwargs=meth_kwargs,
test_exact_match=False, device=device, agg_method="max", tol=tol
)


if __name__ == '__main__':
unittest.main()