Skip to content

add padding-mode choice to RandomCrop #512

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
May 24, 2018
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 7 additions & 4 deletions torchvision/transforms/transforms.py
Original file line number Diff line number Diff line change
Expand Up @@ -368,16 +368,19 @@ class RandomCrop(object):
of the image. Default is 0, i.e no padding. If a sequence of length
4 is provided, it is used to pad left, top, right, bottom borders
respectively.
padding_mode (str): Type of padding. Should be: constant, edge, reflect
or symmetric. Default is constant.
pad_if_needed (boolean): It will pad the image if smaller than the
desired size to avoid raising an exception.
"""

def __init__(self, size, padding=0, pad_if_needed=False):
def __init__(self, size, padding=0, padding_mode='constant', pad_if_needed=False):
if isinstance(size, numbers.Number):
self.size = (int(size), int(size))
else:
self.size = size
self.padding = padding
self.padding_mode = padding_mode
self.pad_if_needed = pad_if_needed

@staticmethod
Expand Down Expand Up @@ -409,14 +412,14 @@ def __call__(self, img):
PIL Image: Cropped image.
"""
if self.padding > 0:
img = F.pad(img, self.padding)
img = F.pad(img, self.padding, padding_mode=self.padding_mode)

# pad the width if needed
if self.pad_if_needed and img.size[0] < self.size[1]:
img = F.pad(img, (int((1 + self.size[1] - img.size[0]) / 2), 0))
img = F.pad(img, (int((1 + self.size[1] - img.size[0]) / 2), 0), padding_mode=self.padding_mode)
# pad the height if needed
if self.pad_if_needed and img.size[1] < self.size[0]:
img = F.pad(img, (0, int((1 + self.size[0] - img.size[1]) / 2)))
img = F.pad(img, (0, int((1 + self.size[0] - img.size[1]) / 2)), padding_mode=self.padding_mode)

i, j, h, w = self.get_params(img, self.size)

Expand Down