-
Notifications
You must be signed in to change notification settings - Fork 5.2k
Rpi 4.9.y #1816
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
commit 3659f98 upstream. Nothing in this minimal script seems to require bash. We often run these tests on embedded devices where the only shell available is the busybox ash. Use sh instead. Signed-off-by: Rolf Eike Beer <[email protected]> Signed-off-by: Shuah Khan <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit a2b1e8a upstream. Nothing in this minimal script seems to require bash. We often run these tests on embedded devices where the only shell available is the busybox ash. Use sh instead. Signed-off-by: Rolf Eike Beer <[email protected]> Signed-off-by: Shuah Khan <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit e7ccfc4 upstream. Commit b4c5c60 ("zram: avoid lockdep splat by revalidate_disk") moved revalidate_disk call out of init_lock to avoid lockdep false-positive splat. However, commit 08eee69 ("zram: remove init_lock in zram_make_request") removed init_lock in IO path so there is no worry about lockdep splat. So, let's restore it. This patch is needed to set BDI_CAP_STABLE_WRITES atomically in next patch. Fixes: da9556a ("zram: user per-cpu compression streams") Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Minchan Kim <[email protected]> Reviewed-by: Sergey Senozhatsky <[email protected]> Cc: Takashi Iwai <[email protected]> Cc: Hyeoncheol Lee <[email protected]> Cc: <[email protected]> Cc: Sangseok Lee <[email protected]> Cc: Hugh Dickins <[email protected]> Cc: Darrick J. Wong <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit b09ab05 upstream. zram has used per-cpu stream feature from v4.7. It aims for increasing cache hit ratio of scratch buffer for compressing. Downside of that approach is that zram should ask memory space for compressed page in per-cpu context which requires stricted gfp flag which could be failed. If so, it retries to allocate memory space out of per-cpu context so it could get memory this time and compress the data again, copies it to the memory space. In this scenario, zram assumes the data should never be changed but it is not true without stable page support. So, If the data is changed under us, zram can make buffer overrun so that zsmalloc free object chain is broken so system goes crash like below https://bugzilla.suse.com/show_bug.cgi?id=997574 This patch adds BDI_CAP_STABLE_WRITES to zram for declaring "I am block device needing *stable write*". Fixes: da9556a ("zram: user per-cpu compression streams") Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Minchan Kim <[email protected]> Reviewed-by: Sergey Senozhatsky <[email protected]> Cc: Takashi Iwai <[email protected]> Cc: Hyeoncheol Lee <[email protected]> Cc: <[email protected]> Cc: Sangseok Lee <[email protected]> Cc: Hugh Dickins <[email protected]> Cc: Darrick J. Wong <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit 965d004 upstream. Currently in DAX if we have three read faults on the same hole address we can end up with the following: Thread 0 Thread 1 Thread 2 -------- -------- -------- dax_iomap_fault grab_mapping_entry lock_slot <locks empty DAX entry> dax_iomap_fault grab_mapping_entry get_unlocked_mapping_entry <sleeps on empty DAX entry> dax_iomap_fault grab_mapping_entry get_unlocked_mapping_entry <sleeps on empty DAX entry> dax_load_hole find_or_create_page ... page_cache_tree_insert dax_wake_mapping_entry_waiter <wakes one sleeper> __radix_tree_replace <swaps empty DAX entry with 4k zero page> <wakes> get_page lock_page ... put_locked_mapping_entry unlock_page put_page <sleeps forever on the DAX wait queue> The crux of the problem is that once we insert a 4k zero page, all locking from then on is done in terms of that 4k zero page and any additional threads sleeping on the empty DAX entry will never be woken. Fix this by waking all sleepers when we replace the DAX radix tree entry with a 4k zero page. This will allow all sleeping threads to successfully transition from locking based on the DAX empty entry to locking on the 4k zero page. With the test case reported by Xiong this happens very regularly in my test setup, with some runs resulting in 9+ threads in this deadlocked state. With this fix I've been able to run that same test dozens of times in a loop without issue. Fixes: ac401cc ("dax: New fault locking") Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Ross Zwisler <[email protected]> Reported-by: Xiong Zhou <[email protected]> Reviewed-by: Jan Kara <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit 20f664a upstream. Andreas reported [1] made a test in jemalloc hang in THP mode in arm64: http://lkml.kernel.org/r/[email protected] The problem is currently page fault handler doesn't supports dirty bit emulation of pmd for non-HW dirty-bit architecture so that application stucks until VM marked the pmd dirty. How the emulation work depends on the architecture. In case of arm64, when it set up pte firstly, it sets pte PTE_RDONLY to get a chance to mark the pte dirty via triggering page fault when store access happens. Once the page fault occurs, VM marks the pmd dirty and arch code for setting pmd will clear PTE_RDONLY for application to proceed. IOW, if VM doesn't mark the pmd dirty, application hangs forever by repeated fault(i.e., store op but the pmd is PTE_RDONLY). This patch enables pmd dirty-bit emulation for those architectures. [1] b8d3c4c, mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called Fixes: b8d3c4c ("mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called") Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Minchan Kim <[email protected]> Reported-by: Andreas Schwab <[email protected]> Tested-by: Andreas Schwab <[email protected]> Acked-by: Kirill A. Shutemov <[email protected]> Acked-by: Michal Hocko <[email protected]> Cc: Jason Evans <[email protected]> Cc: Will Deacon <[email protected]> Cc: Catalin Marinas <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit f931ab4 upstream. Both arch_add_memory() and arch_remove_memory() expect a single threaded context. For example, arch/x86/mm/init_64.c::kernel_physical_mapping_init() does not hold any locks over this check and branch: if (pgd_val(*pgd)) { pud = (pud_t *)pgd_page_vaddr(*pgd); paddr_last = phys_pud_init(pud, __pa(vaddr), __pa(vaddr_end), page_size_mask); continue; } pud = alloc_low_page(); paddr_last = phys_pud_init(pud, __pa(vaddr), __pa(vaddr_end), page_size_mask); The result is that two threads calling devm_memremap_pages() simultaneously can end up colliding on pgd initialization. This leads to crash signatures like the following where the loser of the race initializes the wrong pgd entry: BUG: unable to handle kernel paging request at ffff888ebfff0000 IP: memcpy_erms+0x6/0x10 PGD 2f8e8fc067 PUD 0 /* <---- Invalid PUD */ Oops: 0000 [#1] SMP DEBUG_PAGEALLOC CPU: 54 PID: 3818 Comm: systemd-udevd Not tainted 4.6.7+ #13 task: ffff882fac290040 ti: ffff882f887a4000 task.ti: ffff882f887a4000 RIP: memcpy_erms+0x6/0x10 [..] Call Trace: ? pmem_do_bvec+0x205/0x370 [nd_pmem] ? blk_queue_enter+0x3a/0x280 pmem_rw_page+0x38/0x80 [nd_pmem] bdev_read_page+0x84/0xb0 Hold the standard memory hotplug mutex over calls to arch_{add,remove}_memory(). Fixes: 41e94a8 ("add devm_memremap_pages") Link: http://lkml.kernel.org/r/148357647831.9498.12606007370121652979.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <[email protected]> Cc: Christoph Hellwig <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit e7ee2c0 upstream. The crash happens rather often when we reset some cluster nodes while nodes contend fiercely to do truncate and append. The crash backtrace is below: dlm: C21CBDA5E0774F4BA5A9D4F317717495: dlm_recover_grant 1 locks on 971 resources dlm: C21CBDA5E0774F4BA5A9D4F317717495: dlm_recover 9 generation 5 done: 4 ms ocfs2: Begin replay journal (node 318952601, slot 2) on device (253,18) ocfs2: End replay journal (node 318952601, slot 2) on device (253,18) ocfs2: Beginning quota recovery on device (253,18) for slot 2 ocfs2: Finishing quota recovery on device (253,18) for slot 2 (truncate,30154,1):ocfs2_truncate_file:470 ERROR: bug expression: le64_to_cpu(fe->i_size) != i_size_read(inode) (truncate,30154,1):ocfs2_truncate_file:470 ERROR: Inode 290321, inode i_size = 732 != di i_size = 937, i_flags = 0x1 ------------[ cut here ]------------ kernel BUG at /usr/src/linux/fs/ocfs2/file.c:470! invalid opcode: 0000 [#1] SMP Modules linked in: ocfs2_stack_user(OEN) ocfs2(OEN) ocfs2_nodemanager ocfs2_stackglue(OEN) quota_tree dlm(OEN) configfs fuse sd_mod iscsi_tcp libiscsi_tcp libiscsi scsi_transport_iscsi af_packet iscsi_ibft iscsi_boot_sysfs softdog xfs libcrc32c ppdev parport_pc pcspkr parport joydev virtio_balloon virtio_net i2c_piix4 acpi_cpufreq button processor ext4 crc16 jbd2 mbcache ata_generic cirrus virtio_blk ata_piix drm_kms_helper ahci syscopyarea libahci sysfillrect sysimgblt fb_sys_fops ttm floppy libata drm virtio_pci virtio_ring uhci_hcd virtio ehci_hcd usbcore serio_raw usb_common sg dm_multipath dm_mod scsi_dh_rdac scsi_dh_emc scsi_dh_alua scsi_mod autofs4 Supported: No, Unsupported modules are loaded CPU: 1 PID: 30154 Comm: truncate Tainted: G OE N 4.4.21-69-default #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20151112_172657-sheep25 04/01/2014 task: ffff88004ff6d240 ti: ffff880074e68000 task.ti: ffff880074e68000 RIP: 0010:[<ffffffffa05c8c30>] [<ffffffffa05c8c30>] ocfs2_truncate_file+0x640/0x6c0 [ocfs2] RSP: 0018:ffff880074e6bd50 EFLAGS: 00010282 RAX: 0000000000000074 RBX: 000000000000029e RCX: 0000000000000000 RDX: 0000000000000001 RSI: 0000000000000246 RDI: 0000000000000246 RBP: ffff880074e6bda8 R08: 000000003675dc7a R09: ffffffff82013414 R10: 0000000000034c50 R11: 0000000000000000 R12: ffff88003aab3448 R13: 00000000000002dc R14: 0000000000046e11 R15: 0000000000000020 FS: 00007f839f965700(0000) GS:ffff88007fc80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 00007f839f97e000 CR3: 0000000036723000 CR4: 00000000000006e0 Call Trace: ocfs2_setattr+0x698/0xa90 [ocfs2] notify_change+0x1ae/0x380 do_truncate+0x5e/0x90 do_sys_ftruncate.constprop.11+0x108/0x160 entry_SYSCALL_64_fastpath+0x12/0x6d Code: 24 28 ba d6 01 00 00 48 c7 c6 30 43 62 a0 8b 41 2c 89 44 24 08 48 8b 41 20 48 c7 c1 78 a3 62 a0 48 89 04 24 31 c0 e8 a0 97 f9 ff <0f> 0b 3d 00 fe ff ff 0f 84 ab fd ff ff 83 f8 fc 0f 84 a2 fd ff RIP [<ffffffffa05c8c30>] ocfs2_truncate_file+0x640/0x6c0 [ocfs2] It's because ocfs2_inode_lock() get us stale LVB in which the i_size is not equal to the disk i_size. We mistakenly trust the LVB because the underlaying fsdlm dlm_lock() doesn't set lkb_sbflags with DLM_SBF_VALNOTVALID properly for us. But, why? The current code tries to downconvert lock without DLM_LKF_VALBLK flag to tell o2cb don't update RSB's LVB if it's a PR->NULL conversion, even if the lock resource type needs LVB. This is not the right way for fsdlm. The fsdlm plugin behaves different on DLM_LKF_VALBLK, it depends on DLM_LKF_VALBLK to decide if we care about the LVB in the LKB. If DLM_LKF_VALBLK is not set, fsdlm will skip recovering RSB's LVB from this lkb and set the right DLM_SBF_VALNOTVALID appropriately when node failure happens. The following diagram briefly illustrates how this crash happens: RSB1 is inode metadata lock resource with LOCK_TYPE_USES_LVB; The 1st round: Node1 Node2 RSB1: PR RSB1(master): NULL->EX ocfs2_downconvert_lock(PR->NULL, set_lvb==0) ocfs2_dlm_lock(no DLM_LKF_VALBLK) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - dlm_lock(no DLM_LKF_VALBLK) convert_lock(overwrite lkb->lkb_exflags with no DLM_LKF_VALBLK) RSB1: NULL RSB1: EX reset Node2 dlm_recover_rsbs() recover_lvb() /* The LVB is not trustable if the node with EX fails and * no lock >= PR is left. We should set RSB_VALNOTVALID for RSB1. */ if(!(kb_exflags & DLM_LKF_VALBLK)) /* This means we miss the chance to return; * to invalid the LVB here. */ The 2nd round: Node 1 Node2 RSB1(become master from recovery) ocfs2_setattr() ocfs2_inode_lock(NULL->EX) /* dlm_lock() return the stale lvb without setting DLM_SBF_VALNOTVALID */ ocfs2_meta_lvb_is_trustable() return 1 /* so we don't refresh inode from disk */ ocfs2_truncate_file() mlog_bug_on_msg(disk isize != i_size_read(inode)) /* crash! */ The fix is quite straightforward. We keep to set DLM_LKF_VALBLK flag for dlm_lock() if the lock resource type needs LVB and the fsdlm plugin is uesed. Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Eric Ren <[email protected]> Reviewed-by: Joseph Qi <[email protected]> Cc: Mark Fasheh <[email protected]> Cc: Joel Becker <[email protected]> Cc: Junxiao Bi <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
…s enabled commit b4536f0 upstream. Nils Holland and Klaus Ethgen have reported unexpected OOM killer invocations with 32b kernel starting with 4.8 kernels kworker/u4:5 invoked oom-killer: gfp_mask=0x2400840(GFP_NOFS|__GFP_NOFAIL), nodemask=0, order=0, oom_score_adj=0 kworker/u4:5 cpuset=/ mems_allowed=0 CPU: 1 PID: 2603 Comm: kworker/u4:5 Not tainted 4.9.0-gentoo #2 [...] Mem-Info: active_anon:58685 inactive_anon:90 isolated_anon:0 active_file:274324 inactive_file:281962 isolated_file:0 unevictable:0 dirty:649 writeback:0 unstable:0 slab_reclaimable:40662 slab_unreclaimable:17754 mapped:7382 shmem:202 pagetables:351 bounce:0 free:206736 free_pcp:332 free_cma:0 Node 0 active_anon:234740kB inactive_anon:360kB active_file:1097296kB inactive_file:1127848kB unevictable:0kB isolated(anon):0kB isolated(file):0kB mapped:29528kB dirty:2596kB writeback:0kB shmem:0kB shmem_thp: 0kB shmem_pmdmapped: 184320kB anon_thp: 808kB writeback_tmp:0kB unstable:0kB pages_scanned:0 all_unreclaimable? no DMA free:3952kB min:788kB low:984kB high:1180kB active_anon:0kB inactive_anon:0kB active_file:7316kB inactive_file:0kB unevictable:0kB writepending:96kB present:15992kB managed:15916kB mlocked:0kB slab_reclaimable:3200kB slab_unreclaimable:1408kB kernel_stack:0kB pagetables:0kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB lowmem_reserve[]: 0 813 3474 3474 Normal free:41332kB min:41368kB low:51708kB high:62048kB active_anon:0kB inactive_anon:0kB active_file:532748kB inactive_file:44kB unevictable:0kB writepending:24kB present:897016kB managed:836248kB mlocked:0kB slab_reclaimable:159448kB slab_unreclaimable:69608kB kernel_stack:1112kB pagetables:1404kB bounce:0kB free_pcp:528kB local_pcp:340kB free_cma:0kB lowmem_reserve[]: 0 0 21292 21292 HighMem free:781660kB min:512kB low:34356kB high:68200kB active_anon:234740kB inactive_anon:360kB active_file:557232kB inactive_file:1127804kB unevictable:0kB writepending:2592kB present:2725384kB managed:2725384kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:0kB kernel_stack:0kB pagetables:0kB bounce:0kB free_pcp:800kB local_pcp:608kB free_cma:0kB the oom killer is clearly pre-mature because there there is still a lot of page cache in the zone Normal which should satisfy this lowmem request. Further debugging has shown that the reclaim cannot make any forward progress because the page cache is hidden in the active list which doesn't get rotated because inactive_list_is_low is not memcg aware. The code simply subtracts per-zone highmem counters from the respective memcg's lru sizes which doesn't make any sense. We can simply end up always seeing the resulting active and inactive counts 0 and return false. This issue is not limited to 32b kernels but in practice the effect on systems without CONFIG_HIGHMEM would be much harder to notice because we do not invoke the OOM killer for allocations requests targeting < ZONE_NORMAL. Fix the issue by tracking per zone lru page counts in mem_cgroup_per_node and subtract per-memcg highmem counts when memcg is enabled. Introduce helper lruvec_zone_lru_size which redirects to either zone counters or mem_cgroup_get_zone_lru_size when appropriate. We are losing empty LRU but non-zero lru size detection introduced by ca70723 ("mm: update_lru_size warn and reset bad lru_size") because of the inherent zone vs. node discrepancy. Fixes: f8d1a31 ("mm: consider whether to decivate based on eligible zones inactive ratio") Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Michal Hocko <[email protected]> Reported-by: Nils Holland <[email protected]> Tested-by: Nils Holland <[email protected]> Reported-by: Klaus Ethgen <[email protected]> Acked-by: Minchan Kim <[email protected]> Acked-by: Mel Gorman <[email protected]> Acked-by: Johannes Weiner <[email protected]> Reviewed-by: Vladimir Davydov <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit f057142 upstream. During developemnt for zram-swap asynchronous writeback, I found strange corruption of compressed page, resulting in: Modules linked in: zram(E) CPU: 3 PID: 1520 Comm: zramd-1 Tainted: G E 4.8.0-mm1-00320-ge0d4894c9c38-dirty #3274 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014 task: ffff88007620b840 task.stack: ffff880078090000 RIP: set_freeobj.part.43+0x1c/0x1f RSP: 0018:ffff880078093ca8 EFLAGS: 00010246 RAX: 0000000000000018 RBX: ffff880076798d88 RCX: ffffffff81c408c8 RDX: 0000000000000018 RSI: 0000000000000000 RDI: 0000000000000246 RBP: ffff880078093cb0 R08: 0000000000000000 R09: 0000000000000000 R10: ffff88005bc43030 R11: 0000000000001df3 R12: ffff880076798d88 R13: 000000000005bc43 R14: ffff88007819d1b8 R15: 0000000000000001 FS: 0000000000000000(0000) GS:ffff88007e380000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fc934048f20 CR3: 0000000077b01000 CR4: 00000000000406e0 Call Trace: obj_malloc+0x22b/0x260 zs_malloc+0x1e4/0x580 zram_bvec_rw+0x4cd/0x830 [zram] page_requests_rw+0x9c/0x130 [zram] zram_thread+0xe6/0x173 [zram] kthread+0xca/0xe0 ret_from_fork+0x25/0x30 With investigation, it reveals currently stable page doesn't support anonymous page. IOW, reuse_swap_page can reuse the page without waiting writeback completion so it can overwrite page zram is compressing. Unfortunately, zram has used per-cpu stream feature from v4.7. It aims for increasing cache hit ratio of scratch buffer for compressing. Downside of that approach is that zram should ask memory space for compressed page in per-cpu context which requires stricted gfp flag which could be failed. If so, it retries to allocate memory space out of per-cpu context so it could get memory this time and compress the data again, copies it to the memory space. In this scenario, zram assumes the data should never be changed but it is not true unless stable page supports. So, If the data is changed under us, zram can make buffer overrun because second compression size could be bigger than one we got in previous trial and blindly, copy bigger size object to smaller buffer which is buffer overrun. The overrun breaks zsmalloc free object chaining so system goes crash like above. I think below is same problem. https://bugzilla.suse.com/show_bug.cgi?id=997574 Unfortunately, reuse_swap_page should be atomic so that we cannot wait on writeback in there so the approach in this patch is simply return false if we found it needs stable page. Although it increases memory footprint temporarily, it happens rarely and it should be reclaimed easily althoug it happened. Also, It would be better than waiting of IO completion, which is critial path for application latency. Fixes: da9556a ("zram: user per-cpu compression streams") Link: http://lkml.kernel.org/r/20161120233015.GA14113@bbox Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Minchan Kim <[email protected]> Acked-by: Hugh Dickins <[email protected]> Cc: Sergey Senozhatsky <[email protected]> Cc: Darrick J. Wong <[email protected]> Cc: Takashi Iwai <[email protected]> Cc: Hyeoncheol Lee <[email protected]> Cc: <[email protected]> Cc: Sangseok Lee <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit c4e490c upstream. This patch fixes a bug in the freelist randomization code. When a high random number is used, the freelist will contain duplicate entries. It will result in different allocations sharing the same chunk. It will result in odd behaviours and crashes. It should be uncommon but it depends on the machines. We saw it happening more often on some machines (every few hours of running tests). Fixes: c7ce4f6 ("mm: SLAB freelist randomization") Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: John Sperbeck <[email protected]> Signed-off-by: Thomas Garnier <[email protected]> Cc: Christoph Lameter <[email protected]> Cc: Pekka Enberg <[email protected]> Cc: David Rientjes <[email protected]> Cc: Joonsoo Kim <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit e5bbc8a upstream. return_unused_surplus_pages() decrements the global reservation count, and frees any unused surplus pages that were backing the reservation. Commit 7848a4b ("mm/hugetlb.c: add cond_resched_lock() in return_unused_surplus_pages()") added a call to cond_resched_lock in the loop freeing the pages. As a result, the hugetlb_lock could be dropped, and someone else could use the pages that will be freed in subsequent iterations of the loop. This could result in inconsistent global hugetlb page state, application api failures (such as mmap) failures or application crashes. When dropping the lock in return_unused_surplus_pages, make sure that the global reservation count (resv_huge_pages) remains sufficiently large to prevent someone else from claiming pages about to be freed. Analyzed by Paul Cassella. Fixes: 7848a4b ("mm/hugetlb.c: add cond_resched_lock() in return_unused_surplus_pages()") Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Mike Kravetz <[email protected]> Reported-by: Paul Cassella <[email protected]> Suggested-by: Michal Hocko <[email protected]> Cc: Masayoshi Mizuma <[email protected]> Cc: Naoya Horiguchi <[email protected]> Cc: Aneesh Kumar <[email protected]> Cc: Hillf Danton <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit 33ab911 upstream. This is CVE-2017-2583. On Intel this causes a failed vmentry because SS's type is neither 3 nor 7 (even though the manual says this check is only done for usable SS, and the dmesg splat says that SS is unusable!). On AMD it's worse: svm.c is confused and sets CPL to 0 in the vmcb. The fix fabricates a data segment descriptor when SS is set to a null selector, so that CPL and SS.DPL are set correctly in the VMCS/vmcb. Furthermore, only allow setting SS to a NULL selector if SS.RPL < 3; this in turn ensures CPL < 3 because RPL must be equal to CPL. Thanks to Andy Lutomirski and Willy Tarreau for help in analyzing the bug and deciphering the manuals. Reported-by: Xiaohan Zhang <[email protected]> Fixes: 79d5b4c Signed-off-by: Paolo Bonzini <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit 4f3dbdf upstream. Reported syzkaller: BUG: unable to handle kernel NULL pointer dereference at 0000000000000008 IP: irq_bypass_unregister_consumer+0x9d/0xb70 [irqbypass] PGD 0 Oops: 0002 [#1] SMP CPU: 1 PID: 125 Comm: kworker/1:1 Not tainted 4.9.0+ #1 Workqueue: kvm-irqfd-cleanup irqfd_shutdown [kvm] task: ffff9bbe0dfbb900 task.stack: ffffb61802014000 RIP: 0010:irq_bypass_unregister_consumer+0x9d/0xb70 [irqbypass] Call Trace: irqfd_shutdown+0x66/0xa0 [kvm] process_one_work+0x16b/0x480 worker_thread+0x4b/0x500 kthread+0x101/0x140 ? process_one_work+0x480/0x480 ? kthread_create_on_node+0x60/0x60 ret_from_fork+0x25/0x30 RIP: irq_bypass_unregister_consumer+0x9d/0xb70 [irqbypass] RSP: ffffb61802017e20 CR2: 0000000000000008 The syzkaller folks reported a NULL pointer dereference that due to unregister an consumer which fails registration before. The syzkaller creates two VMs w/ an equal eventfd occasionally. So the second VM fails to register an irqbypass consumer. It will make irqfd as inactive and queue an workqueue work to shutdown irqfd and unregister the irqbypass consumer when eventfd is closed. However, the second consumer has been initialized though it fails registration. So the token(same as the first VM's) is taken to unregister the consumer through the workqueue, the consumer of the first VM is found and unregistered, then NULL deref incurred in the path of deleting consumer from the consumers list. This patch fixes it by making irq_bypass_register/unregister_consumer() looks for the consumer entry based on consumer pointer itself instead of token matching. Reported-by: Dmitry Vyukov <[email protected]> Suggested-by: Alex Williamson <[email protected]> Cc: Paolo Bonzini <[email protected]> Cc: Radim Krčmář <[email protected]> Cc: Dmitry Vyukov <[email protected]> Cc: Alex Williamson <[email protected]> Signed-off-by: Wanpeng Li <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit b6416e6 upstream. Modules that use static_key_deferred need a way to synchronize with any delayed work that is still pending when the module is unloaded. Introduce static_key_deferred_flush() which flushes any pending jump label updates. Signed-off-by: David Matlack <[email protected]> Acked-by: Peter Zijlstra (Intel) <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit cef84c3 upstream. KVM's lapic emulation uses static_key_deferred (apic_{hw,sw}_disabled). These are implemented with delayed_work structs which can still be pending when the KVM module is unloaded. We've seen this cause kernel panics when the kvm_intel module is quickly reloaded. Use the new static_key_deferred_flush() API to flush pending updates on module unload. Signed-off-by: David Matlack <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit 546d87e upstream. Reported by syzkaller: BUG: unable to handle kernel NULL pointer dereference at 00000000000001b0 IP: _raw_spin_lock+0xc/0x30 PGD 3e28eb067 PUD 3f0ac6067 PMD 0 Oops: 0002 [#1] SMP CPU: 0 PID: 2431 Comm: test Tainted: G OE 4.10.0-rc1+ #3 Call Trace: ? kvm_ioapic_scan_entry+0x3e/0x110 [kvm] kvm_arch_vcpu_ioctl_run+0x10a8/0x15f0 [kvm] ? pick_next_task_fair+0xe1/0x4e0 ? kvm_arch_vcpu_load+0xea/0x260 [kvm] kvm_vcpu_ioctl+0x33a/0x600 [kvm] ? hrtimer_try_to_cancel+0x29/0x130 ? do_nanosleep+0x97/0xf0 do_vfs_ioctl+0xa1/0x5d0 ? __hrtimer_init+0x90/0x90 ? do_nanosleep+0x5b/0xf0 SyS_ioctl+0x79/0x90 do_syscall_64+0x6e/0x180 entry_SYSCALL64_slow_path+0x25/0x25 RIP: _raw_spin_lock+0xc/0x30 RSP: ffffa43688973cc0 The syzkaller folks reported a NULL pointer dereference due to ENABLE_CAP succeeding even without an irqchip. The Hyper-V synthetic interrupt controller is activated, resulting in a wrong request to rescan the ioapic and a NULL pointer dereference. #include <sys/ioctl.h> #include <sys/mman.h> #include <sys/types.h> #include <linux/kvm.h> #include <pthread.h> #include <stddef.h> #include <stdint.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #ifndef KVM_CAP_HYPERV_SYNIC #define KVM_CAP_HYPERV_SYNIC 123 #endif void* thr(void* arg) { struct kvm_enable_cap cap; cap.flags = 0; cap.cap = KVM_CAP_HYPERV_SYNIC; ioctl((long)arg, KVM_ENABLE_CAP, &cap); return 0; } int main() { void *host_mem = mmap(0, 0x1000, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); int kvmfd = open("/dev/kvm", 0); int vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0); struct kvm_userspace_memory_region memreg; memreg.slot = 0; memreg.flags = 0; memreg.guest_phys_addr = 0; memreg.memory_size = 0x1000; memreg.userspace_addr = (unsigned long)host_mem; host_mem[0] = 0xf4; ioctl(vmfd, KVM_SET_USER_MEMORY_REGION, &memreg); int cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0); struct kvm_sregs sregs; ioctl(cpufd, KVM_GET_SREGS, &sregs); sregs.cr0 = 0; sregs.cr4 = 0; sregs.efer = 0; sregs.cs.selector = 0; sregs.cs.base = 0; ioctl(cpufd, KVM_SET_SREGS, &sregs); struct kvm_regs regs = { .rflags = 2 }; ioctl(cpufd, KVM_SET_REGS, ®s); ioctl(vmfd, KVM_CREATE_IRQCHIP, 0); pthread_t th; pthread_create(&th, 0, thr, (void*)(long)cpufd); usleep(rand() % 10000); ioctl(cpufd, KVM_RUN, 0); pthread_join(th, 0); return 0; } This patch fixes it by failing ENABLE_CAP if without an irqchip. Reported-by: Dmitry Vyukov <[email protected]> Fixes: 5c91941 (kvm/x86: Hyper-V synthetic interrupt controller) Cc: Paolo Bonzini <[email protected]> Cc: Radim Krčmář <[email protected]> Cc: Dmitry Vyukov <[email protected]> Signed-off-by: Wanpeng Li <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit d3fe959 upstream. Needed for FXSAVE and FXRSTOR. Signed-off-by: Radim Krčmář <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit aabba3c upstream. Move the existing exception handling for inline assembly into a macro and switch its return values to X86EMUL type. Signed-off-by: Radim Krčmář <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit 283c95d upstream. Internal errors were reported on 16 bit fxsave and fxrstor with ipxe. Old Intels don't have unrestricted_guest, so we have to emulate them. The patch takes advantage of the hardware implementation. AMD and Intel differ in saving and restoring other fields in first 32 bytes. A test wrote 0xff to the fxsave area, 0 to upper bits of MCSXR in the fxsave area, executed fxrstor, rewrote the fxsave area to 0xee, and executed fxsave: Intel (Nehalem): 7f 1f 7f 7f ff 00 ff 07 ff ff ff ff ff ff 00 00 ff ff ff ff ff ff 00 00 ff ff 00 00 ff ff 00 00 Intel (Haswell -- deprecated FPU CS and FPU DS): 7f 1f 7f 7f ff 00 ff 07 ff ff ff ff 00 00 00 00 ff ff ff ff 00 00 00 00 ff ff 00 00 ff ff 00 00 AMD (Opteron 2300-series): 7f 1f 7f 7f ff 00 ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ff ff 00 00 ff ff 02 00 fxsave/fxrstor will only be emulated on early Intels, so KVM can't do much to improve the situation. Signed-off-by: Radim Krčmář <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit 129a72a upstream. Introduces segemented_write_std. Switches from emulated reads/writes to standard read/writes in fxsave, fxrstor, sgdt, and sidt. This fixes CVE-2017-2584, a longstanding kernel memory leak. Since commit 283c95d ("KVM: x86: emulate FXSAVE and FXRSTOR", 2016-11-09), which is luckily not yet in any final release, this would also be an exploitable kernel memory *write*! Reported-by: Dmitry Vyukov <[email protected]> Fixes: 9605157 Fixes: 283c95d Suggested-by: Paolo Bonzini <[email protected]> Signed-off-by: Steve Rutherford <[email protected]> Signed-off-by: Paolo Bonzini <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit abfb7b6 upstream. As reported by James Morse, the current libstub code involving the annotated memory map only works somewhat correctly by accident, due to the fact that a pool allocation happens to be reused immediately, retaining its former contents on most implementations of the UEFI boot services. Instead of juggling memory maps, which makes the code more complex than it needs to be, simply put placeholder values into the FDT for the memory map parameters, and only write the actual values after ExitBootServices() has been called. Reported-by: James Morse <[email protected]> Signed-off-by: Ard Biesheuvel <[email protected]> Cc: Jeffrey Hugo <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Matt Fleming <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: [email protected] Cc: [email protected] Fixes: ed9cc15 ("efi/libstub: Use efi_exit_boot_services() in FDT") Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit 0100a3e upstream. Some machines, such as the Lenovo ThinkPad W541 with firmware GNET80WW (2.28), include memory map entries with phys_addr=0x0 and num_pages=0. These machines fail to boot after the following commit, commit 8e80632 ("efi/esrt: Use efi_mem_reserve() and avoid a kmalloc()") Fix this by removing such bogus entries from the memory map. Furthermore, currently the log output for this case (with efi=debug) looks like: [ 0.000000] efi: mem45: [Reserved | | | | | | | | | | | | ] range=[0x0000000000000000-0xffffffffffffffff] (0MB) This is clearly wrong, and also not as informative as it could be. This patch changes it so that if we find obviously invalid memory map entries, we print an error and skip those entries. It also detects the display of the address range calculation overflow, so the new output is: [ 0.000000] efi: [Firmware Bug]: Invalid EFI memory map entries: [ 0.000000] efi: mem45: [Reserved | | | | | | | | | | | | ] range=[0x0000000000000000-0x0000000000000000] (invalid) It also detects memory map sizes that would overflow the physical address, for example phys_addr=0xfffffffffffff000 and num_pages=0x0200000000000001, and prints: [ 0.000000] efi: [Firmware Bug]: Invalid EFI memory map entries: [ 0.000000] efi: mem45: [Reserved | | | | | | | | | | | | ] range=[phys_addr=0xfffffffffffff000-0x20ffffffffffffffff] (invalid) It then removes these entries from the memory map. Signed-off-by: Peter Jones <[email protected]> Signed-off-by: Ard Biesheuvel <[email protected]> [ardb: refactor for clarity with no functional changes, avoid PAGE_SHIFT] Signed-off-by: Matt Fleming <[email protected]> [Matt: Include bugzilla info in commit log] Cc: Linus Torvalds <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Thomas Gleixner <[email protected]> Link: https://bugzilla.kernel.org/show_bug.cgi?id=191121 Signed-off-by: Ingo Molnar <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit 20b1e22 upstream. With the following commit: 4bc9f92 ("x86/efi-bgrt: Use efi_mem_reserve() to avoid copying image data") ... efi_bgrt_init() calls into the memblock allocator through efi_mem_reserve() => efi_arch_mem_reserve() *after* mm_init() has been called. Indeed, KASAN reports a bad read access later on in efi_free_boot_services(): BUG: KASAN: use-after-free in efi_free_boot_services+0xae/0x24c at addr ffff88022de12740 Read of size 4 by task swapper/0/0 page:ffffea0008b78480 count:0 mapcount:-127 mapping: (null) index:0x1 flags: 0x5fff8000000000() [...] Call Trace: dump_stack+0x68/0x9f kasan_report_error+0x4c8/0x500 kasan_report+0x58/0x60 __asan_load4+0x61/0x80 efi_free_boot_services+0xae/0x24c start_kernel+0x527/0x562 x86_64_start_reservations+0x24/0x26 x86_64_start_kernel+0x157/0x17a start_cpu+0x5/0x14 The instruction at the given address is the first read from the memmap's memory, i.e. the read of md->type in efi_free_boot_services(). Note that the writes earlier in efi_arch_mem_reserve() don't splat because they're done through early_memremap()ed addresses. So, after memblock is gone, allocations should be done through the "normal" page allocator. Introduce a helper, efi_memmap_alloc() for this. Use it from efi_arch_mem_reserve(), efi_free_boot_services() and, for the sake of consistency, from efi_fake_memmap() as well. Note that for the latter, the memmap allocations cease to be page aligned. This isn't needed though. Tested-by: Dan Williams <[email protected]> Signed-off-by: Nicolai Stange <[email protected]> Reviewed-by: Ard Biesheuvel <[email protected]> Cc: Dave Young <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Matt Fleming <[email protected]> Cc: Mika Penttilä <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: [email protected] Fixes: 4bc9f92 ("x86/efi-bgrt: Use efi_mem_reserve() to avoid copying image data") Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit 753aacf upstream. A single netlink socket might own multiple interfaces *and* a scheduled scan request (which might belong to another interface), so when it goes away both may need to be destroyed. Remove the schedule_scan_stop indirection to fix this - it's only needed for interface destruction because of the way this works right now, with a single work taking care of all interfaces. Fixes: 93a1e86 ("nl80211: Stop scheduled scan if netlink client disappears") Signed-off-by: Johannes Berg <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit 5018ada upstream. When removing a gpiochip that uses GPIO hogging (e.g. by unloading the chip's DT overlay), a warning is printed: gpio gpiochip8: REMOVING GPIOCHIP WITH GPIOS STILL REQUESTED This happens because gpiochip_free_hogs() is called after the gdev->chip pointer is reset to NULL. Hence __gpiod_free() cannot determine the chip in use, and cannot clear flags nor call the optional chip-specific .free() callback. Move the call to gpiochip_free_hogs() up to fix this. Fixes: ff2b135 ("gpio: make the gpiochip a real device") Signed-off-by: Geert Uytterhoeven <[email protected]> Signed-off-by: Linus Walleij <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit 0a417b8 upstream. Commit 99579cc "xfs: skip dirty pages in ->releasepage()" started to skip dirty pages in xfs_vm_releasepage() which also has the effect that if a dirty page is truncated, it does not get freed by block_invalidatepage() and is lingering in LRU list waiting for reclaim. So a simple loop like: while true; do dd if=/dev/zero of=file bs=1M count=100 rm file done will keep using more and more memory until we hit low watermarks and start pagecache reclaim which will eventually reclaim also the truncate pages. Keeping these truncated (and thus never usable) pages in memory is just a waste of memory, is unnecessarily stressing page cache reclaim, and reportedly also leads to anonymous mmap(2) returning ENOMEM prematurely. So instead of just skipping dirty pages in xfs_vm_releasepage(), return to old behavior of skipping them only if they have delalloc or unwritten buffers and fix the spurious warnings by warning only if the page is clean. CC: Brian Foster <[email protected]> CC: Vlastimil Babka <[email protected]> Reported-by: Petr Tůma <[email protected]> Fixes: 99579cc Signed-off-by: Jan Kara <[email protected]> Reviewed-by: Brian Foster <[email protected]> Signed-off-by: Darrick J. Wong <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
…terface commit 14221cc upstream. Problem: br_nf_pre_routing_finish() calls itself instead of br_nf_pre_routing_finish_bridge(). Due to this bug reverse path filter drops packets that go through bridge interface. User impact: Local docker containers with bridge network can not communicate with each other. Fixes: c5136b1 ("netfilter: bridge: add and use br_nf_hook_thresh") Signed-off-by: Artur Molchanov <[email protected]> Acked-by: Florian Westphal <[email protected]> Signed-off-by: Pablo Neira Ayuso <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit b6a50cd upstream. These changes do not affect current hw - just a cleanup: Currently, we assume that a system has a single Last Level Cache (LLC) per node, and that the cpu_llc_id is thus equal to the node_id. This no longer applies since Fam17h can have multiple last level caches within a node. So group the cpu_llc_id assignment by topology feature and family in order to make the computation of cpu_llc_id on the different families more clear. Here is how the LLC ID is being computed on the different families: The NODEID_MSR feature only applies to Fam10h in which case the LLC is at the node level. The TOPOEXT feature is used on families 15h, 16h and 17h. So far we only see multiple last level caches if L3 caches are available. Otherwise, the cpu_llc_id will default to be the phys_proc_id. We have L3 caches only on families 15h and 17h: - on Fam15h, the LLC is at the node level. - on Fam17h, the LLC is at the core complex level and can be found by right shifting the APIC ID. Also, keep the family checks explicit so that new families will fall back to the default, which will be node_id for TOPOEXT systems. Single node systems in families 10h and 15h will have a Node ID of 0 which will be the same as the phys_proc_id, so we don't need to check for multiple nodes before using the node_id. Tested-by: Borislav Petkov <[email protected]> Signed-off-by: Yazen Ghannam <[email protected]> [ Rewrote the commit message. ] Signed-off-by: Borislav Petkov <[email protected]> Acked-by: Thomas Gleixner <[email protected]> Cc: Aravind Gopalakrishnan <[email protected]> Cc: Linus Torvalds <[email protected]> Cc: Peter Zijlstra <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Ingo Molnar <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
commit 3344ed3 upstream. The workaround for the AMD Erratum E400 (Local APIC timer stops in C1E state) is a two step process: - Selection of the E400 aware idle routine - Detection whether the platform is affected The idle routine selection happens for possibly affected CPUs depending on family/model/stepping information. These range of CPUs is not necessarily affected as the decision whether to enable the C1E feature is made by the firmware. Unfortunately there is no way to query this at early boot. The current implementation polls a MSR in the E400 aware idle routine to detect whether the CPU is affected. This is inefficient on non affected CPUs because every idle entry has to do the MSR read. There is a better way to detect this before going idle for the first time which requires to seperate the bug flags: X86_BUG_AMD_E400 - Selects the E400 aware idle routine and enables the detection X86_BUG_AMD_APIC_C1E - Set when the platform is affected by E400 Replace the current X86_BUG_AMD_APIC_C1E usage by the new X86_BUG_AMD_E400 bug bit to select the idle routine which currently does an unconditional detection poll. X86_BUG_AMD_APIC_C1E is going to be used in later patches to remove the MSR polling and simplify the handling of this misfeature. Signed-off-by: Thomas Gleixner <[email protected]> Signed-off-by: Borislav Petkov <[email protected]> Cc: Jiri Olsa <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Thomas Gleixner <[email protected]> Signed-off-by: Greg Kroah-Hartman <[email protected]>
Support a dynamic clock by reading the frequency and setting the divisor in the transfer function instead of during probe. Signed-off-by: Noralf Trønnes <[email protected]> Reviewed-by: Martin Sperl <[email protected]>
This adds a debug module parameter to aid in debugging transfer issues by printing info to the kernel log. When enabled, status values are collected in the interrupt routine and msg info in bcm2835_i2c_start_transfer(). This is done in a way that tries to avoid affecting timing. Having printk in the isr can mask issues. debug values (additive): 1: Print info on error 2: Print info on all transfers 3: Print messages before transfer is started The value can be changed at runtime: /sys/module/i2c_bcm2835/parameters/debug Example output, debug=3: [ 747.114448] bcm2835_i2c_xfer: msg(1/2) write addr=0x54, len=2 flags= [i2c1] [ 747.114463] bcm2835_i2c_xfer: msg(2/2) read addr=0x54, len=32 flags= [i2c1] [ 747.117809] start_transfer: msg(1/2) write addr=0x54, len=2 flags= [i2c1] [ 747.117825] isr: remain=2, status=0x30000055 : TA TXW TXD TXE [i2c1] [ 747.117839] start_transfer: msg(2/2) read addr=0x54, len=32 flags= [i2c1] [ 747.117849] isr: remain=32, status=0xd0000039 : TA RXR TXD RXD [i2c1] [ 747.117861] isr: remain=20, status=0xd0000039 : TA RXR TXD RXD [i2c1] [ 747.117870] isr: remain=8, status=0x32 : DONE TXD RXD [i2c1] Signed-off-by: Noralf Trønnes <[email protected]>
* Added a writable sysfs object to enable scripts / user space software to blink MIDI activity LEDs for variable duration. * Improved hw_param constraints setting. * Added compatibility with S16_LE sample format. * Exposed some simple placeholder volume controls, so the card appears in volumealsa widget. Signed-off-by: Giedrius Trainavicius <[email protected]>
This reverts commit bf84bab.
This is achieved by making changes only to the requested stream direction format, keeping the other stream direction configuration intact. Signed-off-by: Giedrius Trainavicius <[email protected]>
Add driver name property for use with 5.1 passthrough audio in LibreElec and other Kodi based OSs
Add driver_name parameter for use with 5.1 passthrough audio in LibreElec and other Kodi OSs
pi3-disable-wifi is a minimal overlay to disable the onboard WiFi. Signed-off-by: Phil Elwell <[email protected]>
* Invoke the dtc compiler with the same options used in arm mode. * ARM64 now uses the bcm2835 platform just like ARM32. * ARM64: Update bcmrpi3_defconfig Signed-off-by: Michael Zoran <[email protected]>
Randomization allows the mapping between virtual addresses and physical address to be different on each boot. This makes it more difficult to exploit security vulnerabilities that require knowledge of fixed hardware addresses. The firmware generates a 8 byte random number during bootup and stores it in the device tree under chosen/kaslr-seed. This number is used to randomize the address mapping. This change enables this feature in the build configuration for ARM64. Signed-off-by: Michael Zoran <[email protected]>
These drivers use an ASM function from the base system to compute the ipv6 checksum. These functions are not available on ARM64, probably because nobody has bother to write them. The base system does have a generic "C" version, so a simple fix is to include the header to use the generic version on ARM64 only. A longer term solution would be to submit the necessary ASM function to the upstream source. With this change, these drivers now compile without any errors on ARM64. Signed-off-by: Michael Zoran <[email protected]>
These drivers build now, so they can be enabled back in the build configuration just like they are for 32 bit. Signed-off-by: Michael Zoran <[email protected]>
The spi0-cs overlay allows the software chip selectts to be modified using the cs0_pin and cs1_pin parameters. Signed-off-by: Phil Elwell <[email protected]>
Select software CS in bcm2708_common.dtsi, and disable the automatic conversion in the driver to allow hardware CS to be re-enabled with an overlay. See: #1547 Signed-off-by: Phil Elwell <[email protected]>
This reverts commit f5a6236. See: #1799 Signed-off-by: Phil Elwell <[email protected]>
Signed-off-by: Phil Elwell <[email protected]>
See: #1781 Signed-off-by: Phil Elwell <[email protected]>
In ARM64, the FIQ mechanism used by this driver is not current implemented. As a workaround, reqular IRQ is used instead of FIQ. In a separate change, the IRQ-CPU mapping is round robined on ARM64 to increase concurrency and allow multiple interrupts to be serviced at a time. This reduces the need for FIQ. Tests Run: This mechanism is most likely to break when multiple USB devices are attached at the same time. So the system was tested under stress. Devices: 1. USB Speakers playing back a FLAC audio through VLC at 96KHz.(Higher then typically, but supported on my speakers). 2. sftp transferring large files through the buildin ethernet connection which is connected through USB. 3. Keyboard and mouse attached and being used. Although I do occasionally hear some glitches, the music seems to play quite well. Signed-off-by: Michael Zoran <[email protected]>
IRQ-CPU mapping is round robined on ARM64 to increase concurrency and allow multiple interrupts to be serviced at a time. This reduces the need for FIQ. Signed-off-by: Michael Zoran <[email protected]>
Signed-off-by: Michael Zoran <[email protected]>
If it breaks on anybody, they can use the standard device tree overlays to switch back to the dwc2 driver. Signed-off-by: Michael Zoran <[email protected]>
The CM1 dtb contains an empty audio_pins node, but no reference to it. Adding the usual pinctrl reference from the audio node enables the audremap overlay (and others) to easily turn on audio. Signed-off-by: Phil Elwell <[email protected]>
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
No description provided.