-
Notifications
You must be signed in to change notification settings - Fork 5.2k
Please pull in 3.9 branch: mainly implemented: I2C sniffer/Slave in order to receive I2C events from devices (by default only I2C master is supported)+ some fixes in I2C/FIQ area #399
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Closed
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
…tandard i2c-bcm2708 driver, also proper removal of FIQ patch in otg_dwc usb host driver
skullandbones
pushed a commit
to skullandbones/linux
that referenced
this pull request
Jul 29, 2019
[ Upstream commit 28261da ] Because of both sides doing L2CAP disconnection at the same time, it was possible to receive L2CAP Disconnection Response with CID that was already freed. That caused problems if CID was already reused and L2CAP Connection Request with same CID was sent out. Before this patch kernel deleted channel context regardless of the state of the channel. Example where leftover Disconnection Response (frame raspberrypi#402) causes local device to delete L2CAP channel which was not yet connected. This in turn confuses remote device's stack because same CID is re-used without properly disconnecting. Btmon capture before patch: ** snip ** > ACL Data RX: Handle 43 flags 0x02 dlen 8 raspberrypi#394 [hci1] 10.748949 Channel: 65 len 4 [PSM 3 mode 0] {chan 2} RFCOMM: Disconnect (DISC) (0x43) Address: 0x03 cr 1 dlci 0x00 Control: 0x53 poll/final 1 Length: 0 FCS: 0xfd < ACL Data TX: Handle 43 flags 0x00 dlen 8 raspberrypi#395 [hci1] 10.749062 Channel: 65 len 4 [PSM 3 mode 0] {chan 2} RFCOMM: Unnumbered Ack (UA) (0x63) Address: 0x03 cr 1 dlci 0x00 Control: 0x73 poll/final 1 Length: 0 FCS: 0xd7 < ACL Data TX: Handle 43 flags 0x00 dlen 12 raspberrypi#396 [hci1] 10.749073 L2CAP: Disconnection Request (0x06) ident 17 len 4 Destination CID: 65 Source CID: 65 > HCI Event: Number of Completed Packets (0x13) plen 5 raspberrypi#397 [hci1] 10.752391 Num handles: 1 Handle: 43 Count: 1 > HCI Event: Number of Completed Packets (0x13) plen 5 raspberrypi#398 [hci1] 10.753394 Num handles: 1 Handle: 43 Count: 1 > ACL Data RX: Handle 43 flags 0x02 dlen 12 raspberrypi#399 [hci1] 10.756499 L2CAP: Disconnection Request (0x06) ident 26 len 4 Destination CID: 65 Source CID: 65 < ACL Data TX: Handle 43 flags 0x00 dlen 12 raspberrypi#400 [hci1] 10.756548 L2CAP: Disconnection Response (0x07) ident 26 len 4 Destination CID: 65 Source CID: 65 < ACL Data TX: Handle 43 flags 0x00 dlen 12 raspberrypi#401 [hci1] 10.757459 L2CAP: Connection Request (0x02) ident 18 len 4 PSM: 1 (0x0001) Source CID: 65 > ACL Data RX: Handle 43 flags 0x02 dlen 12 raspberrypi#402 [hci1] 10.759148 L2CAP: Disconnection Response (0x07) ident 17 len 4 Destination CID: 65 Source CID: 65 = bluetoothd: 00:1E:AB:4C:56:54: error updating services: Input/o.. 10.759447 > HCI Event: Number of Completed Packets (0x13) plen 5 raspberrypi#403 [hci1] 10.759386 Num handles: 1 Handle: 43 Count: 1 > ACL Data RX: Handle 43 flags 0x02 dlen 12 raspberrypi#404 [hci1] 10.760397 L2CAP: Connection Request (0x02) ident 27 len 4 PSM: 3 (0x0003) Source CID: 65 < ACL Data TX: Handle 43 flags 0x00 dlen 16 raspberrypi#405 [hci1] 10.760441 L2CAP: Connection Response (0x03) ident 27 len 8 Destination CID: 65 Source CID: 65 Result: Connection successful (0x0000) Status: No further information available (0x0000) < ACL Data TX: Handle 43 flags 0x00 dlen 27 raspberrypi#406 [hci1] 10.760449 L2CAP: Configure Request (0x04) ident 19 len 19 Destination CID: 65 Flags: 0x0000 Option: Maximum Transmission Unit (0x01) [mandatory] MTU: 1013 Option: Retransmission and Flow Control (0x04) [mandatory] Mode: Basic (0x00) TX window size: 0 Max transmit: 0 Retransmission timeout: 0 Monitor timeout: 0 Maximum PDU size: 0 > HCI Event: Number of Completed Packets (0x13) plen 5 raspberrypi#407 [hci1] 10.761399 Num handles: 1 Handle: 43 Count: 1 > ACL Data RX: Handle 43 flags 0x02 dlen 16 raspberrypi#408 [hci1] 10.762942 L2CAP: Connection Response (0x03) ident 18 len 8 Destination CID: 66 Source CID: 65 Result: Connection successful (0x0000) Status: No further information available (0x0000) *snip* Similar case after the patch: *snip* > ACL Data RX: Handle 43 flags 0x02 dlen 8 #22702 [hci0] 1664.411056 Channel: 65 len 4 [PSM 3 mode 0] {chan 3} RFCOMM: Disconnect (DISC) (0x43) Address: 0x03 cr 1 dlci 0x00 Control: 0x53 poll/final 1 Length: 0 FCS: 0xfd < ACL Data TX: Handle 43 flags 0x00 dlen 8 #22703 [hci0] 1664.411136 Channel: 65 len 4 [PSM 3 mode 0] {chan 3} RFCOMM: Unnumbered Ack (UA) (0x63) Address: 0x03 cr 1 dlci 0x00 Control: 0x73 poll/final 1 Length: 0 FCS: 0xd7 < ACL Data TX: Handle 43 flags 0x00 dlen 12 #22704 [hci0] 1664.411143 L2CAP: Disconnection Request (0x06) ident 11 len 4 Destination CID: 65 Source CID: 65 > HCI Event: Number of Completed Pac.. (0x13) plen 5 #22705 [hci0] 1664.414009 Num handles: 1 Handle: 43 Count: 1 > HCI Event: Number of Completed Pac.. (0x13) plen 5 #22706 [hci0] 1664.415007 Num handles: 1 Handle: 43 Count: 1 > ACL Data RX: Handle 43 flags 0x02 dlen 12 #22707 [hci0] 1664.418674 L2CAP: Disconnection Request (0x06) ident 17 len 4 Destination CID: 65 Source CID: 65 < ACL Data TX: Handle 43 flags 0x00 dlen 12 #22708 [hci0] 1664.418762 L2CAP: Disconnection Response (0x07) ident 17 len 4 Destination CID: 65 Source CID: 65 < ACL Data TX: Handle 43 flags 0x00 dlen 12 #22709 [hci0] 1664.421073 L2CAP: Connection Request (0x02) ident 12 len 4 PSM: 1 (0x0001) Source CID: 65 > ACL Data RX: Handle 43 flags 0x02 dlen 12 #22710 [hci0] 1664.421371 L2CAP: Disconnection Response (0x07) ident 11 len 4 Destination CID: 65 Source CID: 65 > HCI Event: Number of Completed Pac.. (0x13) plen 5 #22711 [hci0] 1664.424082 Num handles: 1 Handle: 43 Count: 1 > HCI Event: Number of Completed Pac.. (0x13) plen 5 #22712 [hci0] 1664.425040 Num handles: 1 Handle: 43 Count: 1 > ACL Data RX: Handle 43 flags 0x02 dlen 12 #22713 [hci0] 1664.426103 L2CAP: Connection Request (0x02) ident 18 len 4 PSM: 3 (0x0003) Source CID: 65 < ACL Data TX: Handle 43 flags 0x00 dlen 16 #22714 [hci0] 1664.426186 L2CAP: Connection Response (0x03) ident 18 len 8 Destination CID: 66 Source CID: 65 Result: Connection successful (0x0000) Status: No further information available (0x0000) < ACL Data TX: Handle 43 flags 0x00 dlen 27 #22715 [hci0] 1664.426196 L2CAP: Configure Request (0x04) ident 13 len 19 Destination CID: 65 Flags: 0x0000 Option: Maximum Transmission Unit (0x01) [mandatory] MTU: 1013 Option: Retransmission and Flow Control (0x04) [mandatory] Mode: Basic (0x00) TX window size: 0 Max transmit: 0 Retransmission timeout: 0 Monitor timeout: 0 Maximum PDU size: 0 > ACL Data RX: Handle 43 flags 0x02 dlen 16 #22716 [hci0] 1664.428804 L2CAP: Connection Response (0x03) ident 12 len 8 Destination CID: 66 Source CID: 65 Result: Connection successful (0x0000) Status: No further information available (0x0000) *snip* Fix is to check that channel is in state BT_DISCONN before deleting the channel. This bug was found while fuzzing Bluez's OBEX implementation using Synopsys Defensics. Reported-by: Matti Kamunen <[email protected]> Reported-by: Ari Timonen <[email protected]> Signed-off-by: Matias Karhumaa <[email protected]> Signed-off-by: Marcel Holtmann <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
popcornmix
pushed a commit
that referenced
this pull request
Jul 31, 2019
[ Upstream commit 28261da ] Because of both sides doing L2CAP disconnection at the same time, it was possible to receive L2CAP Disconnection Response with CID that was already freed. That caused problems if CID was already reused and L2CAP Connection Request with same CID was sent out. Before this patch kernel deleted channel context regardless of the state of the channel. Example where leftover Disconnection Response (frame #402) causes local device to delete L2CAP channel which was not yet connected. This in turn confuses remote device's stack because same CID is re-used without properly disconnecting. Btmon capture before patch: ** snip ** > ACL Data RX: Handle 43 flags 0x02 dlen 8 #394 [hci1] 10.748949 Channel: 65 len 4 [PSM 3 mode 0] {chan 2} RFCOMM: Disconnect (DISC) (0x43) Address: 0x03 cr 1 dlci 0x00 Control: 0x53 poll/final 1 Length: 0 FCS: 0xfd < ACL Data TX: Handle 43 flags 0x00 dlen 8 #395 [hci1] 10.749062 Channel: 65 len 4 [PSM 3 mode 0] {chan 2} RFCOMM: Unnumbered Ack (UA) (0x63) Address: 0x03 cr 1 dlci 0x00 Control: 0x73 poll/final 1 Length: 0 FCS: 0xd7 < ACL Data TX: Handle 43 flags 0x00 dlen 12 #396 [hci1] 10.749073 L2CAP: Disconnection Request (0x06) ident 17 len 4 Destination CID: 65 Source CID: 65 > HCI Event: Number of Completed Packets (0x13) plen 5 #397 [hci1] 10.752391 Num handles: 1 Handle: 43 Count: 1 > HCI Event: Number of Completed Packets (0x13) plen 5 #398 [hci1] 10.753394 Num handles: 1 Handle: 43 Count: 1 > ACL Data RX: Handle 43 flags 0x02 dlen 12 #399 [hci1] 10.756499 L2CAP: Disconnection Request (0x06) ident 26 len 4 Destination CID: 65 Source CID: 65 < ACL Data TX: Handle 43 flags 0x00 dlen 12 #400 [hci1] 10.756548 L2CAP: Disconnection Response (0x07) ident 26 len 4 Destination CID: 65 Source CID: 65 < ACL Data TX: Handle 43 flags 0x00 dlen 12 #401 [hci1] 10.757459 L2CAP: Connection Request (0x02) ident 18 len 4 PSM: 1 (0x0001) Source CID: 65 > ACL Data RX: Handle 43 flags 0x02 dlen 12 #402 [hci1] 10.759148 L2CAP: Disconnection Response (0x07) ident 17 len 4 Destination CID: 65 Source CID: 65 = bluetoothd: 00:1E:AB:4C:56:54: error updating services: Input/o.. 10.759447 > HCI Event: Number of Completed Packets (0x13) plen 5 #403 [hci1] 10.759386 Num handles: 1 Handle: 43 Count: 1 > ACL Data RX: Handle 43 flags 0x02 dlen 12 #404 [hci1] 10.760397 L2CAP: Connection Request (0x02) ident 27 len 4 PSM: 3 (0x0003) Source CID: 65 < ACL Data TX: Handle 43 flags 0x00 dlen 16 #405 [hci1] 10.760441 L2CAP: Connection Response (0x03) ident 27 len 8 Destination CID: 65 Source CID: 65 Result: Connection successful (0x0000) Status: No further information available (0x0000) < ACL Data TX: Handle 43 flags 0x00 dlen 27 #406 [hci1] 10.760449 L2CAP: Configure Request (0x04) ident 19 len 19 Destination CID: 65 Flags: 0x0000 Option: Maximum Transmission Unit (0x01) [mandatory] MTU: 1013 Option: Retransmission and Flow Control (0x04) [mandatory] Mode: Basic (0x00) TX window size: 0 Max transmit: 0 Retransmission timeout: 0 Monitor timeout: 0 Maximum PDU size: 0 > HCI Event: Number of Completed Packets (0x13) plen 5 #407 [hci1] 10.761399 Num handles: 1 Handle: 43 Count: 1 > ACL Data RX: Handle 43 flags 0x02 dlen 16 #408 [hci1] 10.762942 L2CAP: Connection Response (0x03) ident 18 len 8 Destination CID: 66 Source CID: 65 Result: Connection successful (0x0000) Status: No further information available (0x0000) *snip* Similar case after the patch: *snip* > ACL Data RX: Handle 43 flags 0x02 dlen 8 #22702 [hci0] 1664.411056 Channel: 65 len 4 [PSM 3 mode 0] {chan 3} RFCOMM: Disconnect (DISC) (0x43) Address: 0x03 cr 1 dlci 0x00 Control: 0x53 poll/final 1 Length: 0 FCS: 0xfd < ACL Data TX: Handle 43 flags 0x00 dlen 8 #22703 [hci0] 1664.411136 Channel: 65 len 4 [PSM 3 mode 0] {chan 3} RFCOMM: Unnumbered Ack (UA) (0x63) Address: 0x03 cr 1 dlci 0x00 Control: 0x73 poll/final 1 Length: 0 FCS: 0xd7 < ACL Data TX: Handle 43 flags 0x00 dlen 12 #22704 [hci0] 1664.411143 L2CAP: Disconnection Request (0x06) ident 11 len 4 Destination CID: 65 Source CID: 65 > HCI Event: Number of Completed Pac.. (0x13) plen 5 #22705 [hci0] 1664.414009 Num handles: 1 Handle: 43 Count: 1 > HCI Event: Number of Completed Pac.. (0x13) plen 5 #22706 [hci0] 1664.415007 Num handles: 1 Handle: 43 Count: 1 > ACL Data RX: Handle 43 flags 0x02 dlen 12 #22707 [hci0] 1664.418674 L2CAP: Disconnection Request (0x06) ident 17 len 4 Destination CID: 65 Source CID: 65 < ACL Data TX: Handle 43 flags 0x00 dlen 12 #22708 [hci0] 1664.418762 L2CAP: Disconnection Response (0x07) ident 17 len 4 Destination CID: 65 Source CID: 65 < ACL Data TX: Handle 43 flags 0x00 dlen 12 #22709 [hci0] 1664.421073 L2CAP: Connection Request (0x02) ident 12 len 4 PSM: 1 (0x0001) Source CID: 65 > ACL Data RX: Handle 43 flags 0x02 dlen 12 #22710 [hci0] 1664.421371 L2CAP: Disconnection Response (0x07) ident 11 len 4 Destination CID: 65 Source CID: 65 > HCI Event: Number of Completed Pac.. (0x13) plen 5 #22711 [hci0] 1664.424082 Num handles: 1 Handle: 43 Count: 1 > HCI Event: Number of Completed Pac.. (0x13) plen 5 #22712 [hci0] 1664.425040 Num handles: 1 Handle: 43 Count: 1 > ACL Data RX: Handle 43 flags 0x02 dlen 12 #22713 [hci0] 1664.426103 L2CAP: Connection Request (0x02) ident 18 len 4 PSM: 3 (0x0003) Source CID: 65 < ACL Data TX: Handle 43 flags 0x00 dlen 16 #22714 [hci0] 1664.426186 L2CAP: Connection Response (0x03) ident 18 len 8 Destination CID: 66 Source CID: 65 Result: Connection successful (0x0000) Status: No further information available (0x0000) < ACL Data TX: Handle 43 flags 0x00 dlen 27 #22715 [hci0] 1664.426196 L2CAP: Configure Request (0x04) ident 13 len 19 Destination CID: 65 Flags: 0x0000 Option: Maximum Transmission Unit (0x01) [mandatory] MTU: 1013 Option: Retransmission and Flow Control (0x04) [mandatory] Mode: Basic (0x00) TX window size: 0 Max transmit: 0 Retransmission timeout: 0 Monitor timeout: 0 Maximum PDU size: 0 > ACL Data RX: Handle 43 flags 0x02 dlen 16 #22716 [hci0] 1664.428804 L2CAP: Connection Response (0x03) ident 12 len 8 Destination CID: 66 Source CID: 65 Result: Connection successful (0x0000) Status: No further information available (0x0000) *snip* Fix is to check that channel is in state BT_DISCONN before deleting the channel. This bug was found while fuzzing Bluez's OBEX implementation using Synopsys Defensics. Reported-by: Matti Kamunen <[email protected]> Reported-by: Ari Timonen <[email protected]> Signed-off-by: Matias Karhumaa <[email protected]> Signed-off-by: Marcel Holtmann <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
popcornmix
pushed a commit
that referenced
this pull request
Jul 31, 2019
[ Upstream commit 28261da ] Because of both sides doing L2CAP disconnection at the same time, it was possible to receive L2CAP Disconnection Response with CID that was already freed. That caused problems if CID was already reused and L2CAP Connection Request with same CID was sent out. Before this patch kernel deleted channel context regardless of the state of the channel. Example where leftover Disconnection Response (frame #402) causes local device to delete L2CAP channel which was not yet connected. This in turn confuses remote device's stack because same CID is re-used without properly disconnecting. Btmon capture before patch: ** snip ** > ACL Data RX: Handle 43 flags 0x02 dlen 8 #394 [hci1] 10.748949 Channel: 65 len 4 [PSM 3 mode 0] {chan 2} RFCOMM: Disconnect (DISC) (0x43) Address: 0x03 cr 1 dlci 0x00 Control: 0x53 poll/final 1 Length: 0 FCS: 0xfd < ACL Data TX: Handle 43 flags 0x00 dlen 8 #395 [hci1] 10.749062 Channel: 65 len 4 [PSM 3 mode 0] {chan 2} RFCOMM: Unnumbered Ack (UA) (0x63) Address: 0x03 cr 1 dlci 0x00 Control: 0x73 poll/final 1 Length: 0 FCS: 0xd7 < ACL Data TX: Handle 43 flags 0x00 dlen 12 #396 [hci1] 10.749073 L2CAP: Disconnection Request (0x06) ident 17 len 4 Destination CID: 65 Source CID: 65 > HCI Event: Number of Completed Packets (0x13) plen 5 #397 [hci1] 10.752391 Num handles: 1 Handle: 43 Count: 1 > HCI Event: Number of Completed Packets (0x13) plen 5 #398 [hci1] 10.753394 Num handles: 1 Handle: 43 Count: 1 > ACL Data RX: Handle 43 flags 0x02 dlen 12 #399 [hci1] 10.756499 L2CAP: Disconnection Request (0x06) ident 26 len 4 Destination CID: 65 Source CID: 65 < ACL Data TX: Handle 43 flags 0x00 dlen 12 #400 [hci1] 10.756548 L2CAP: Disconnection Response (0x07) ident 26 len 4 Destination CID: 65 Source CID: 65 < ACL Data TX: Handle 43 flags 0x00 dlen 12 #401 [hci1] 10.757459 L2CAP: Connection Request (0x02) ident 18 len 4 PSM: 1 (0x0001) Source CID: 65 > ACL Data RX: Handle 43 flags 0x02 dlen 12 #402 [hci1] 10.759148 L2CAP: Disconnection Response (0x07) ident 17 len 4 Destination CID: 65 Source CID: 65 = bluetoothd: 00:1E:AB:4C:56:54: error updating services: Input/o.. 10.759447 > HCI Event: Number of Completed Packets (0x13) plen 5 #403 [hci1] 10.759386 Num handles: 1 Handle: 43 Count: 1 > ACL Data RX: Handle 43 flags 0x02 dlen 12 #404 [hci1] 10.760397 L2CAP: Connection Request (0x02) ident 27 len 4 PSM: 3 (0x0003) Source CID: 65 < ACL Data TX: Handle 43 flags 0x00 dlen 16 #405 [hci1] 10.760441 L2CAP: Connection Response (0x03) ident 27 len 8 Destination CID: 65 Source CID: 65 Result: Connection successful (0x0000) Status: No further information available (0x0000) < ACL Data TX: Handle 43 flags 0x00 dlen 27 #406 [hci1] 10.760449 L2CAP: Configure Request (0x04) ident 19 len 19 Destination CID: 65 Flags: 0x0000 Option: Maximum Transmission Unit (0x01) [mandatory] MTU: 1013 Option: Retransmission and Flow Control (0x04) [mandatory] Mode: Basic (0x00) TX window size: 0 Max transmit: 0 Retransmission timeout: 0 Monitor timeout: 0 Maximum PDU size: 0 > HCI Event: Number of Completed Packets (0x13) plen 5 #407 [hci1] 10.761399 Num handles: 1 Handle: 43 Count: 1 > ACL Data RX: Handle 43 flags 0x02 dlen 16 #408 [hci1] 10.762942 L2CAP: Connection Response (0x03) ident 18 len 8 Destination CID: 66 Source CID: 65 Result: Connection successful (0x0000) Status: No further information available (0x0000) *snip* Similar case after the patch: *snip* > ACL Data RX: Handle 43 flags 0x02 dlen 8 #22702 [hci0] 1664.411056 Channel: 65 len 4 [PSM 3 mode 0] {chan 3} RFCOMM: Disconnect (DISC) (0x43) Address: 0x03 cr 1 dlci 0x00 Control: 0x53 poll/final 1 Length: 0 FCS: 0xfd < ACL Data TX: Handle 43 flags 0x00 dlen 8 #22703 [hci0] 1664.411136 Channel: 65 len 4 [PSM 3 mode 0] {chan 3} RFCOMM: Unnumbered Ack (UA) (0x63) Address: 0x03 cr 1 dlci 0x00 Control: 0x73 poll/final 1 Length: 0 FCS: 0xd7 < ACL Data TX: Handle 43 flags 0x00 dlen 12 #22704 [hci0] 1664.411143 L2CAP: Disconnection Request (0x06) ident 11 len 4 Destination CID: 65 Source CID: 65 > HCI Event: Number of Completed Pac.. (0x13) plen 5 #22705 [hci0] 1664.414009 Num handles: 1 Handle: 43 Count: 1 > HCI Event: Number of Completed Pac.. (0x13) plen 5 #22706 [hci0] 1664.415007 Num handles: 1 Handle: 43 Count: 1 > ACL Data RX: Handle 43 flags 0x02 dlen 12 #22707 [hci0] 1664.418674 L2CAP: Disconnection Request (0x06) ident 17 len 4 Destination CID: 65 Source CID: 65 < ACL Data TX: Handle 43 flags 0x00 dlen 12 #22708 [hci0] 1664.418762 L2CAP: Disconnection Response (0x07) ident 17 len 4 Destination CID: 65 Source CID: 65 < ACL Data TX: Handle 43 flags 0x00 dlen 12 #22709 [hci0] 1664.421073 L2CAP: Connection Request (0x02) ident 12 len 4 PSM: 1 (0x0001) Source CID: 65 > ACL Data RX: Handle 43 flags 0x02 dlen 12 #22710 [hci0] 1664.421371 L2CAP: Disconnection Response (0x07) ident 11 len 4 Destination CID: 65 Source CID: 65 > HCI Event: Number of Completed Pac.. (0x13) plen 5 #22711 [hci0] 1664.424082 Num handles: 1 Handle: 43 Count: 1 > HCI Event: Number of Completed Pac.. (0x13) plen 5 #22712 [hci0] 1664.425040 Num handles: 1 Handle: 43 Count: 1 > ACL Data RX: Handle 43 flags 0x02 dlen 12 #22713 [hci0] 1664.426103 L2CAP: Connection Request (0x02) ident 18 len 4 PSM: 3 (0x0003) Source CID: 65 < ACL Data TX: Handle 43 flags 0x00 dlen 16 #22714 [hci0] 1664.426186 L2CAP: Connection Response (0x03) ident 18 len 8 Destination CID: 66 Source CID: 65 Result: Connection successful (0x0000) Status: No further information available (0x0000) < ACL Data TX: Handle 43 flags 0x00 dlen 27 #22715 [hci0] 1664.426196 L2CAP: Configure Request (0x04) ident 13 len 19 Destination CID: 65 Flags: 0x0000 Option: Maximum Transmission Unit (0x01) [mandatory] MTU: 1013 Option: Retransmission and Flow Control (0x04) [mandatory] Mode: Basic (0x00) TX window size: 0 Max transmit: 0 Retransmission timeout: 0 Monitor timeout: 0 Maximum PDU size: 0 > ACL Data RX: Handle 43 flags 0x02 dlen 16 #22716 [hci0] 1664.428804 L2CAP: Connection Response (0x03) ident 12 len 8 Destination CID: 66 Source CID: 65 Result: Connection successful (0x0000) Status: No further information available (0x0000) *snip* Fix is to check that channel is in state BT_DISCONN before deleting the channel. This bug was found while fuzzing Bluez's OBEX implementation using Synopsys Defensics. Reported-by: Matti Kamunen <[email protected]> Reported-by: Ari Timonen <[email protected]> Signed-off-by: Matias Karhumaa <[email protected]> Signed-off-by: Marcel Holtmann <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
popcornmix
pushed a commit
that referenced
this pull request
Jul 21, 2021
Subprograms are calling map_poke_track(), but on program release there is no hook to call map_poke_untrack(). However, on program release, the aux memory (and poke descriptor table) is freed even though we still have a reference to it in the element list of the map aux data. When we run map_poke_run(), we then end up accessing free'd memory, triggering KASAN in prog_array_map_poke_run(): [...] [ 402.824689] BUG: KASAN: use-after-free in prog_array_map_poke_run+0xc2/0x34e [ 402.824698] Read of size 4 at addr ffff8881905a7940 by task hubble-fgs/4337 [ 402.824705] CPU: 1 PID: 4337 Comm: hubble-fgs Tainted: G I 5.12.0+ #399 [ 402.824715] Call Trace: [ 402.824719] dump_stack+0x93/0xc2 [ 402.824727] print_address_description.constprop.0+0x1a/0x140 [ 402.824736] ? prog_array_map_poke_run+0xc2/0x34e [ 402.824740] ? prog_array_map_poke_run+0xc2/0x34e [ 402.824744] kasan_report.cold+0x7c/0xd8 [ 402.824752] ? prog_array_map_poke_run+0xc2/0x34e [ 402.824757] prog_array_map_poke_run+0xc2/0x34e [ 402.824765] bpf_fd_array_map_update_elem+0x124/0x1a0 [...] The elements concerned are walked as follows: for (i = 0; i < elem->aux->size_poke_tab; i++) { poke = &elem->aux->poke_tab[i]; [...] The access to size_poke_tab is a 4 byte read, verified by checking offsets in the KASAN dump: [ 402.825004] The buggy address belongs to the object at ffff8881905a7800 which belongs to the cache kmalloc-1k of size 1024 [ 402.825008] The buggy address is located 320 bytes inside of 1024-byte region [ffff8881905a7800, ffff8881905a7c00) The pahole output of bpf_prog_aux: struct bpf_prog_aux { [...] /* --- cacheline 5 boundary (320 bytes) --- */ u32 size_poke_tab; /* 320 4 */ [...] In general, subprograms do not necessarily manage their own data structures. For example, BTF func_info and linfo are just pointers to the main program structure. This allows reference counting and cleanup to be done on the latter which simplifies their management a bit. The aux->poke_tab struct, however, did not follow this logic. The initial proposed fix for this use-after-free bug further embedded poke data tracking into the subprogram with proper reference counting. However, Daniel and Alexei questioned why we were treating these objects special; I agree, its unnecessary. The fix here removes the per subprogram poke table allocation and map tracking and instead simply points the aux->poke_tab pointer at the main programs poke table. This way, map tracking is simplified to the main program and we do not need to manage them per subprogram. This also means, bpf_prog_free_deferred(), which unwinds the program reference counting and kfrees objects, needs to ensure that we don't try to double free the poke_tab when free'ing the subprog structures. This is easily solved by NULL'ing the poke_tab pointer. The second detail is to ensure that per subprogram JIT logic only does fixups on poke_tab[] entries it owns. To do this, we add a pointer in the poke structure to point at the subprogram value so JITs can easily check while walking the poke_tab structure if the current entry belongs to the current program. The aux pointer is stable and therefore suitable for such comparison. On the jit_subprogs() error path, we omit cleaning up the poke->aux field because these are only ever referenced from the JIT side, but on error we will never make it to the JIT, so its fine to leave them dangling. Removing these pointers would complicate the error path for no reason. However, we do need to untrack all poke descriptors from the main program as otherwise they could race with the freeing of JIT memory from the subprograms. Lastly, a748c69 ("bpf: propagate poke descriptors to subprograms") had an off-by-one on the subprogram instruction index range check as it was testing 'insn_idx >= subprog_start && insn_idx <= subprog_end'. However, subprog_end is the next subprogram's start instruction. Fixes: a748c69 ("bpf: propagate poke descriptors to subprograms") Signed-off-by: John Fastabend <[email protected]> Signed-off-by: Alexei Starovoitov <[email protected]> Co-developed-by: Daniel Borkmann <[email protected]> Signed-off-by: Daniel Borkmann <[email protected]> Link: https://lore.kernel.org/bpf/[email protected]
popcornmix
pushed a commit
that referenced
this pull request
Jul 27, 2021
commit f263a81 upstream. Subprograms are calling map_poke_track(), but on program release there is no hook to call map_poke_untrack(). However, on program release, the aux memory (and poke descriptor table) is freed even though we still have a reference to it in the element list of the map aux data. When we run map_poke_run(), we then end up accessing free'd memory, triggering KASAN in prog_array_map_poke_run(): [...] [ 402.824689] BUG: KASAN: use-after-free in prog_array_map_poke_run+0xc2/0x34e [ 402.824698] Read of size 4 at addr ffff8881905a7940 by task hubble-fgs/4337 [ 402.824705] CPU: 1 PID: 4337 Comm: hubble-fgs Tainted: G I 5.12.0+ #399 [ 402.824715] Call Trace: [ 402.824719] dump_stack+0x93/0xc2 [ 402.824727] print_address_description.constprop.0+0x1a/0x140 [ 402.824736] ? prog_array_map_poke_run+0xc2/0x34e [ 402.824740] ? prog_array_map_poke_run+0xc2/0x34e [ 402.824744] kasan_report.cold+0x7c/0xd8 [ 402.824752] ? prog_array_map_poke_run+0xc2/0x34e [ 402.824757] prog_array_map_poke_run+0xc2/0x34e [ 402.824765] bpf_fd_array_map_update_elem+0x124/0x1a0 [...] The elements concerned are walked as follows: for (i = 0; i < elem->aux->size_poke_tab; i++) { poke = &elem->aux->poke_tab[i]; [...] The access to size_poke_tab is a 4 byte read, verified by checking offsets in the KASAN dump: [ 402.825004] The buggy address belongs to the object at ffff8881905a7800 which belongs to the cache kmalloc-1k of size 1024 [ 402.825008] The buggy address is located 320 bytes inside of 1024-byte region [ffff8881905a7800, ffff8881905a7c00) The pahole output of bpf_prog_aux: struct bpf_prog_aux { [...] /* --- cacheline 5 boundary (320 bytes) --- */ u32 size_poke_tab; /* 320 4 */ [...] In general, subprograms do not necessarily manage their own data structures. For example, BTF func_info and linfo are just pointers to the main program structure. This allows reference counting and cleanup to be done on the latter which simplifies their management a bit. The aux->poke_tab struct, however, did not follow this logic. The initial proposed fix for this use-after-free bug further embedded poke data tracking into the subprogram with proper reference counting. However, Daniel and Alexei questioned why we were treating these objects special; I agree, its unnecessary. The fix here removes the per subprogram poke table allocation and map tracking and instead simply points the aux->poke_tab pointer at the main programs poke table. This way, map tracking is simplified to the main program and we do not need to manage them per subprogram. This also means, bpf_prog_free_deferred(), which unwinds the program reference counting and kfrees objects, needs to ensure that we don't try to double free the poke_tab when free'ing the subprog structures. This is easily solved by NULL'ing the poke_tab pointer. The second detail is to ensure that per subprogram JIT logic only does fixups on poke_tab[] entries it owns. To do this, we add a pointer in the poke structure to point at the subprogram value so JITs can easily check while walking the poke_tab structure if the current entry belongs to the current program. The aux pointer is stable and therefore suitable for such comparison. On the jit_subprogs() error path, we omit cleaning up the poke->aux field because these are only ever referenced from the JIT side, but on error we will never make it to the JIT, so its fine to leave them dangling. Removing these pointers would complicate the error path for no reason. However, we do need to untrack all poke descriptors from the main program as otherwise they could race with the freeing of JIT memory from the subprograms. Lastly, a748c69 ("bpf: propagate poke descriptors to subprograms") had an off-by-one on the subprogram instruction index range check as it was testing 'insn_idx >= subprog_start && insn_idx <= subprog_end'. However, subprog_end is the next subprogram's start instruction. Fixes: a748c69 ("bpf: propagate poke descriptors to subprograms") Signed-off-by: John Fastabend <[email protected]> Signed-off-by: Alexei Starovoitov <[email protected]> Co-developed-by: Daniel Borkmann <[email protected]> Signed-off-by: Daniel Borkmann <[email protected]> Link: https://lore.kernel.org/bpf/[email protected] Signed-off-by: Greg Kroah-Hartman <[email protected]>
pelwell
pushed a commit
to pelwell/linux
that referenced
this pull request
Aug 2, 2021
commit f263a81 upstream. Subprograms are calling map_poke_track(), but on program release there is no hook to call map_poke_untrack(). However, on program release, the aux memory (and poke descriptor table) is freed even though we still have a reference to it in the element list of the map aux data. When we run map_poke_run(), we then end up accessing free'd memory, triggering KASAN in prog_array_map_poke_run(): [...] [ 402.824689] BUG: KASAN: use-after-free in prog_array_map_poke_run+0xc2/0x34e [ 402.824698] Read of size 4 at addr ffff8881905a7940 by task hubble-fgs/4337 [ 402.824705] CPU: 1 PID: 4337 Comm: hubble-fgs Tainted: G I 5.12.0+ raspberrypi#399 [ 402.824715] Call Trace: [ 402.824719] dump_stack+0x93/0xc2 [ 402.824727] print_address_description.constprop.0+0x1a/0x140 [ 402.824736] ? prog_array_map_poke_run+0xc2/0x34e [ 402.824740] ? prog_array_map_poke_run+0xc2/0x34e [ 402.824744] kasan_report.cold+0x7c/0xd8 [ 402.824752] ? prog_array_map_poke_run+0xc2/0x34e [ 402.824757] prog_array_map_poke_run+0xc2/0x34e [ 402.824765] bpf_fd_array_map_update_elem+0x124/0x1a0 [...] The elements concerned are walked as follows: for (i = 0; i < elem->aux->size_poke_tab; i++) { poke = &elem->aux->poke_tab[i]; [...] The access to size_poke_tab is a 4 byte read, verified by checking offsets in the KASAN dump: [ 402.825004] The buggy address belongs to the object at ffff8881905a7800 which belongs to the cache kmalloc-1k of size 1024 [ 402.825008] The buggy address is located 320 bytes inside of 1024-byte region [ffff8881905a7800, ffff8881905a7c00) The pahole output of bpf_prog_aux: struct bpf_prog_aux { [...] /* --- cacheline 5 boundary (320 bytes) --- */ u32 size_poke_tab; /* 320 4 */ [...] In general, subprograms do not necessarily manage their own data structures. For example, BTF func_info and linfo are just pointers to the main program structure. This allows reference counting and cleanup to be done on the latter which simplifies their management a bit. The aux->poke_tab struct, however, did not follow this logic. The initial proposed fix for this use-after-free bug further embedded poke data tracking into the subprogram with proper reference counting. However, Daniel and Alexei questioned why we were treating these objects special; I agree, its unnecessary. The fix here removes the per subprogram poke table allocation and map tracking and instead simply points the aux->poke_tab pointer at the main programs poke table. This way, map tracking is simplified to the main program and we do not need to manage them per subprogram. This also means, bpf_prog_free_deferred(), which unwinds the program reference counting and kfrees objects, needs to ensure that we don't try to double free the poke_tab when free'ing the subprog structures. This is easily solved by NULL'ing the poke_tab pointer. The second detail is to ensure that per subprogram JIT logic only does fixups on poke_tab[] entries it owns. To do this, we add a pointer in the poke structure to point at the subprogram value so JITs can easily check while walking the poke_tab structure if the current entry belongs to the current program. The aux pointer is stable and therefore suitable for such comparison. On the jit_subprogs() error path, we omit cleaning up the poke->aux field because these are only ever referenced from the JIT side, but on error we will never make it to the JIT, so its fine to leave them dangling. Removing these pointers would complicate the error path for no reason. However, we do need to untrack all poke descriptors from the main program as otherwise they could race with the freeing of JIT memory from the subprograms. Lastly, a748c69 ("bpf: propagate poke descriptors to subprograms") had an off-by-one on the subprogram instruction index range check as it was testing 'insn_idx >= subprog_start && insn_idx <= subprog_end'. However, subprog_end is the next subprogram's start instruction. Fixes: a748c69 ("bpf: propagate poke descriptors to subprograms") Signed-off-by: John Fastabend <[email protected]> Signed-off-by: Alexei Starovoitov <[email protected]> Co-developed-by: Daniel Borkmann <[email protected]> Signed-off-by: Daniel Borkmann <[email protected]> Link: https://lore.kernel.org/bpf/[email protected] Signed-off-by: Greg Kroah-Hartman <[email protected]>
popcornmix
pushed a commit
that referenced
this pull request
Jan 27, 2022
[ Upstream commit 6c2e3bf ] This patch fixes the following crash by receiving a invalid message: [ 160.672220] ================================================================== [ 160.676206] BUG: KASAN: user-memory-access in dlm_user_add_ast+0xc3/0x370 [ 160.679659] Read of size 8 at addr 00000000deadbeef by task kworker/u32:13/319 [ 160.681447] [ 160.681824] CPU: 10 PID: 319 Comm: kworker/u32:13 Not tainted 5.14.0-rc2+ #399 [ 160.683472] Hardware name: Red Hat KVM/RHEL-AV, BIOS 1.14.0-1.module+el8.6.0+12648+6ede71a5 04/01/2014 [ 160.685574] Workqueue: dlm_recv process_recv_sockets [ 160.686721] Call Trace: [ 160.687310] dump_stack_lvl+0x56/0x6f [ 160.688169] ? dlm_user_add_ast+0xc3/0x370 [ 160.689116] kasan_report.cold.14+0x116/0x11b [ 160.690138] ? dlm_user_add_ast+0xc3/0x370 [ 160.690832] dlm_user_add_ast+0xc3/0x370 [ 160.691502] _receive_unlock_reply+0x103/0x170 [ 160.692241] _receive_message+0x11df/0x1ec0 [ 160.692926] ? rcu_read_lock_sched_held+0xa1/0xd0 [ 160.693700] ? rcu_read_lock_bh_held+0xb0/0xb0 [ 160.694427] ? lock_acquire+0x175/0x400 [ 160.695058] ? do_purge.isra.51+0x200/0x200 [ 160.695744] ? lock_acquired+0x360/0x5d0 [ 160.696400] ? lock_contended+0x6a0/0x6a0 [ 160.697055] ? lock_release+0x21d/0x5e0 [ 160.697686] ? lock_is_held_type+0xe0/0x110 [ 160.698352] ? lock_is_held_type+0xe0/0x110 [ 160.699026] ? ___might_sleep+0x1cc/0x1e0 [ 160.699698] ? dlm_wait_requestqueue+0x94/0x140 [ 160.700451] ? dlm_process_requestqueue+0x240/0x240 [ 160.701249] ? down_write_killable+0x2b0/0x2b0 [ 160.701988] ? do_raw_spin_unlock+0xa2/0x130 [ 160.702690] dlm_receive_buffer+0x1a5/0x210 [ 160.703385] dlm_process_incoming_buffer+0x726/0x9f0 [ 160.704210] receive_from_sock+0x1c0/0x3b0 [ 160.704886] ? dlm_tcp_shutdown+0x30/0x30 [ 160.705561] ? lock_acquire+0x175/0x400 [ 160.706197] ? rcu_read_lock_sched_held+0xa1/0xd0 [ 160.706941] ? rcu_read_lock_bh_held+0xb0/0xb0 [ 160.707681] process_recv_sockets+0x32/0x40 [ 160.708366] process_one_work+0x55e/0xad0 [ 160.709045] ? pwq_dec_nr_in_flight+0x110/0x110 [ 160.709820] worker_thread+0x65/0x5e0 [ 160.710423] ? process_one_work+0xad0/0xad0 [ 160.711087] kthread+0x1ed/0x220 [ 160.711628] ? set_kthread_struct+0x80/0x80 [ 160.712314] ret_from_fork+0x22/0x30 The issue is that we received a DLM message for a user lock but the destination lock is a kernel lock. Note that the address which is trying to derefence is 00000000deadbeef, which is in a kernel lock lkb->lkb_astparam, this field should never be derefenced by the DLM kernel stack. In case of a user lock lkb->lkb_astparam is lkb->lkb_ua (memory is shared by a union field). The struct lkb_ua will be handled by the DLM kernel stack but on a kernel lock it will contain invalid data and ends in most likely crashing the kernel. It can be reproduced with two cluster nodes. node 2: dlm_tool join test echo "862 fooobaar 1 2 1" > /sys/kernel/debug/dlm/test_locks echo "862 3 1" > /sys/kernel/debug/dlm/test_waiters node 1: dlm_tool join test python: foo = DLM(h_cmd=3, o_nextcmd=1, h_nodeid=1, h_lockspace=0x77222027, \ m_type=7, m_flags=0x1, m_remid=0x862, m_result=0xFFFEFFFE) newFile = open("/sys/kernel/debug/dlm/comms/2/rawmsg", "wb") newFile.write(bytes(foo)) Signed-off-by: Alexander Aring <[email protected]> Signed-off-by: David Teigland <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
popcornmix
pushed a commit
that referenced
this pull request
Jan 28, 2022
[ Upstream commit 6c2e3bf ] This patch fixes the following crash by receiving a invalid message: [ 160.672220] ================================================================== [ 160.676206] BUG: KASAN: user-memory-access in dlm_user_add_ast+0xc3/0x370 [ 160.679659] Read of size 8 at addr 00000000deadbeef by task kworker/u32:13/319 [ 160.681447] [ 160.681824] CPU: 10 PID: 319 Comm: kworker/u32:13 Not tainted 5.14.0-rc2+ #399 [ 160.683472] Hardware name: Red Hat KVM/RHEL-AV, BIOS 1.14.0-1.module+el8.6.0+12648+6ede71a5 04/01/2014 [ 160.685574] Workqueue: dlm_recv process_recv_sockets [ 160.686721] Call Trace: [ 160.687310] dump_stack_lvl+0x56/0x6f [ 160.688169] ? dlm_user_add_ast+0xc3/0x370 [ 160.689116] kasan_report.cold.14+0x116/0x11b [ 160.690138] ? dlm_user_add_ast+0xc3/0x370 [ 160.690832] dlm_user_add_ast+0xc3/0x370 [ 160.691502] _receive_unlock_reply+0x103/0x170 [ 160.692241] _receive_message+0x11df/0x1ec0 [ 160.692926] ? rcu_read_lock_sched_held+0xa1/0xd0 [ 160.693700] ? rcu_read_lock_bh_held+0xb0/0xb0 [ 160.694427] ? lock_acquire+0x175/0x400 [ 160.695058] ? do_purge.isra.51+0x200/0x200 [ 160.695744] ? lock_acquired+0x360/0x5d0 [ 160.696400] ? lock_contended+0x6a0/0x6a0 [ 160.697055] ? lock_release+0x21d/0x5e0 [ 160.697686] ? lock_is_held_type+0xe0/0x110 [ 160.698352] ? lock_is_held_type+0xe0/0x110 [ 160.699026] ? ___might_sleep+0x1cc/0x1e0 [ 160.699698] ? dlm_wait_requestqueue+0x94/0x140 [ 160.700451] ? dlm_process_requestqueue+0x240/0x240 [ 160.701249] ? down_write_killable+0x2b0/0x2b0 [ 160.701988] ? do_raw_spin_unlock+0xa2/0x130 [ 160.702690] dlm_receive_buffer+0x1a5/0x210 [ 160.703385] dlm_process_incoming_buffer+0x726/0x9f0 [ 160.704210] receive_from_sock+0x1c0/0x3b0 [ 160.704886] ? dlm_tcp_shutdown+0x30/0x30 [ 160.705561] ? lock_acquire+0x175/0x400 [ 160.706197] ? rcu_read_lock_sched_held+0xa1/0xd0 [ 160.706941] ? rcu_read_lock_bh_held+0xb0/0xb0 [ 160.707681] process_recv_sockets+0x32/0x40 [ 160.708366] process_one_work+0x55e/0xad0 [ 160.709045] ? pwq_dec_nr_in_flight+0x110/0x110 [ 160.709820] worker_thread+0x65/0x5e0 [ 160.710423] ? process_one_work+0xad0/0xad0 [ 160.711087] kthread+0x1ed/0x220 [ 160.711628] ? set_kthread_struct+0x80/0x80 [ 160.712314] ret_from_fork+0x22/0x30 The issue is that we received a DLM message for a user lock but the destination lock is a kernel lock. Note that the address which is trying to derefence is 00000000deadbeef, which is in a kernel lock lkb->lkb_astparam, this field should never be derefenced by the DLM kernel stack. In case of a user lock lkb->lkb_astparam is lkb->lkb_ua (memory is shared by a union field). The struct lkb_ua will be handled by the DLM kernel stack but on a kernel lock it will contain invalid data and ends in most likely crashing the kernel. It can be reproduced with two cluster nodes. node 2: dlm_tool join test echo "862 fooobaar 1 2 1" > /sys/kernel/debug/dlm/test_locks echo "862 3 1" > /sys/kernel/debug/dlm/test_waiters node 1: dlm_tool join test python: foo = DLM(h_cmd=3, o_nextcmd=1, h_nodeid=1, h_lockspace=0x77222027, \ m_type=7, m_flags=0x1, m_remid=0x862, m_result=0xFFFEFFFE) newFile = open("/sys/kernel/debug/dlm/comms/2/rawmsg", "wb") newFile.write(bytes(foo)) Signed-off-by: Alexander Aring <[email protected]> Signed-off-by: David Teigland <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
popcornmix
pushed a commit
that referenced
this pull request
Jan 28, 2022
[ Upstream commit 6c2e3bf ] This patch fixes the following crash by receiving a invalid message: [ 160.672220] ================================================================== [ 160.676206] BUG: KASAN: user-memory-access in dlm_user_add_ast+0xc3/0x370 [ 160.679659] Read of size 8 at addr 00000000deadbeef by task kworker/u32:13/319 [ 160.681447] [ 160.681824] CPU: 10 PID: 319 Comm: kworker/u32:13 Not tainted 5.14.0-rc2+ #399 [ 160.683472] Hardware name: Red Hat KVM/RHEL-AV, BIOS 1.14.0-1.module+el8.6.0+12648+6ede71a5 04/01/2014 [ 160.685574] Workqueue: dlm_recv process_recv_sockets [ 160.686721] Call Trace: [ 160.687310] dump_stack_lvl+0x56/0x6f [ 160.688169] ? dlm_user_add_ast+0xc3/0x370 [ 160.689116] kasan_report.cold.14+0x116/0x11b [ 160.690138] ? dlm_user_add_ast+0xc3/0x370 [ 160.690832] dlm_user_add_ast+0xc3/0x370 [ 160.691502] _receive_unlock_reply+0x103/0x170 [ 160.692241] _receive_message+0x11df/0x1ec0 [ 160.692926] ? rcu_read_lock_sched_held+0xa1/0xd0 [ 160.693700] ? rcu_read_lock_bh_held+0xb0/0xb0 [ 160.694427] ? lock_acquire+0x175/0x400 [ 160.695058] ? do_purge.isra.51+0x200/0x200 [ 160.695744] ? lock_acquired+0x360/0x5d0 [ 160.696400] ? lock_contended+0x6a0/0x6a0 [ 160.697055] ? lock_release+0x21d/0x5e0 [ 160.697686] ? lock_is_held_type+0xe0/0x110 [ 160.698352] ? lock_is_held_type+0xe0/0x110 [ 160.699026] ? ___might_sleep+0x1cc/0x1e0 [ 160.699698] ? dlm_wait_requestqueue+0x94/0x140 [ 160.700451] ? dlm_process_requestqueue+0x240/0x240 [ 160.701249] ? down_write_killable+0x2b0/0x2b0 [ 160.701988] ? do_raw_spin_unlock+0xa2/0x130 [ 160.702690] dlm_receive_buffer+0x1a5/0x210 [ 160.703385] dlm_process_incoming_buffer+0x726/0x9f0 [ 160.704210] receive_from_sock+0x1c0/0x3b0 [ 160.704886] ? dlm_tcp_shutdown+0x30/0x30 [ 160.705561] ? lock_acquire+0x175/0x400 [ 160.706197] ? rcu_read_lock_sched_held+0xa1/0xd0 [ 160.706941] ? rcu_read_lock_bh_held+0xb0/0xb0 [ 160.707681] process_recv_sockets+0x32/0x40 [ 160.708366] process_one_work+0x55e/0xad0 [ 160.709045] ? pwq_dec_nr_in_flight+0x110/0x110 [ 160.709820] worker_thread+0x65/0x5e0 [ 160.710423] ? process_one_work+0xad0/0xad0 [ 160.711087] kthread+0x1ed/0x220 [ 160.711628] ? set_kthread_struct+0x80/0x80 [ 160.712314] ret_from_fork+0x22/0x30 The issue is that we received a DLM message for a user lock but the destination lock is a kernel lock. Note that the address which is trying to derefence is 00000000deadbeef, which is in a kernel lock lkb->lkb_astparam, this field should never be derefenced by the DLM kernel stack. In case of a user lock lkb->lkb_astparam is lkb->lkb_ua (memory is shared by a union field). The struct lkb_ua will be handled by the DLM kernel stack but on a kernel lock it will contain invalid data and ends in most likely crashing the kernel. It can be reproduced with two cluster nodes. node 2: dlm_tool join test echo "862 fooobaar 1 2 1" > /sys/kernel/debug/dlm/test_locks echo "862 3 1" > /sys/kernel/debug/dlm/test_waiters node 1: dlm_tool join test python: foo = DLM(h_cmd=3, o_nextcmd=1, h_nodeid=1, h_lockspace=0x77222027, \ m_type=7, m_flags=0x1, m_remid=0x862, m_result=0xFFFEFFFE) newFile = open("/sys/kernel/debug/dlm/comms/2/rawmsg", "wb") newFile.write(bytes(foo)) Signed-off-by: Alexander Aring <[email protected]> Signed-off-by: David Teigland <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
whdgmawkd
pushed a commit
to whdgmawkd/linux
that referenced
this pull request
Feb 11, 2022
[ Upstream commit 6c2e3bf ] This patch fixes the following crash by receiving a invalid message: [ 160.672220] ================================================================== [ 160.676206] BUG: KASAN: user-memory-access in dlm_user_add_ast+0xc3/0x370 [ 160.679659] Read of size 8 at addr 00000000deadbeef by task kworker/u32:13/319 [ 160.681447] [ 160.681824] CPU: 10 PID: 319 Comm: kworker/u32:13 Not tainted 5.14.0-rc2+ raspberrypi#399 [ 160.683472] Hardware name: Red Hat KVM/RHEL-AV, BIOS 1.14.0-1.module+el8.6.0+12648+6ede71a5 04/01/2014 [ 160.685574] Workqueue: dlm_recv process_recv_sockets [ 160.686721] Call Trace: [ 160.687310] dump_stack_lvl+0x56/0x6f [ 160.688169] ? dlm_user_add_ast+0xc3/0x370 [ 160.689116] kasan_report.cold.14+0x116/0x11b [ 160.690138] ? dlm_user_add_ast+0xc3/0x370 [ 160.690832] dlm_user_add_ast+0xc3/0x370 [ 160.691502] _receive_unlock_reply+0x103/0x170 [ 160.692241] _receive_message+0x11df/0x1ec0 [ 160.692926] ? rcu_read_lock_sched_held+0xa1/0xd0 [ 160.693700] ? rcu_read_lock_bh_held+0xb0/0xb0 [ 160.694427] ? lock_acquire+0x175/0x400 [ 160.695058] ? do_purge.isra.51+0x200/0x200 [ 160.695744] ? lock_acquired+0x360/0x5d0 [ 160.696400] ? lock_contended+0x6a0/0x6a0 [ 160.697055] ? lock_release+0x21d/0x5e0 [ 160.697686] ? lock_is_held_type+0xe0/0x110 [ 160.698352] ? lock_is_held_type+0xe0/0x110 [ 160.699026] ? ___might_sleep+0x1cc/0x1e0 [ 160.699698] ? dlm_wait_requestqueue+0x94/0x140 [ 160.700451] ? dlm_process_requestqueue+0x240/0x240 [ 160.701249] ? down_write_killable+0x2b0/0x2b0 [ 160.701988] ? do_raw_spin_unlock+0xa2/0x130 [ 160.702690] dlm_receive_buffer+0x1a5/0x210 [ 160.703385] dlm_process_incoming_buffer+0x726/0x9f0 [ 160.704210] receive_from_sock+0x1c0/0x3b0 [ 160.704886] ? dlm_tcp_shutdown+0x30/0x30 [ 160.705561] ? lock_acquire+0x175/0x400 [ 160.706197] ? rcu_read_lock_sched_held+0xa1/0xd0 [ 160.706941] ? rcu_read_lock_bh_held+0xb0/0xb0 [ 160.707681] process_recv_sockets+0x32/0x40 [ 160.708366] process_one_work+0x55e/0xad0 [ 160.709045] ? pwq_dec_nr_in_flight+0x110/0x110 [ 160.709820] worker_thread+0x65/0x5e0 [ 160.710423] ? process_one_work+0xad0/0xad0 [ 160.711087] kthread+0x1ed/0x220 [ 160.711628] ? set_kthread_struct+0x80/0x80 [ 160.712314] ret_from_fork+0x22/0x30 The issue is that we received a DLM message for a user lock but the destination lock is a kernel lock. Note that the address which is trying to derefence is 00000000deadbeef, which is in a kernel lock lkb->lkb_astparam, this field should never be derefenced by the DLM kernel stack. In case of a user lock lkb->lkb_astparam is lkb->lkb_ua (memory is shared by a union field). The struct lkb_ua will be handled by the DLM kernel stack but on a kernel lock it will contain invalid data and ends in most likely crashing the kernel. It can be reproduced with two cluster nodes. node 2: dlm_tool join test echo "862 fooobaar 1 2 1" > /sys/kernel/debug/dlm/test_locks echo "862 3 1" > /sys/kernel/debug/dlm/test_waiters node 1: dlm_tool join test python: foo = DLM(h_cmd=3, o_nextcmd=1, h_nodeid=1, h_lockspace=0x77222027, \ m_type=7, m_flags=0x1, m_remid=0x862, m_result=0xFFFEFFFE) newFile = open("/sys/kernel/debug/dlm/comms/2/rawmsg", "wb") newFile.write(bytes(foo)) Signed-off-by: Alexander Aring <[email protected]> Signed-off-by: David Teigland <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
herrnst
pushed a commit
to herrnst/linux-raspberrypi
that referenced
this pull request
Aug 21, 2022
[ Upstream commit 353d921 ] During execution of the worker that's used to register rpmsg devices we are safely locking the channels mutex but, when creating a new endpoint for such devices, we are registering a IPI on the SCP, which then makes the SCP to trigger an interrupt, lock its own mutex and in turn register more subdevices. This creates a circular locking dependency situation, as the mtk_rpmsg channels_lock will then depend on the SCP IPI lock. [ 15.447736] ====================================================== [ 15.460158] WARNING: possible circular locking dependency detected [ 15.460161] 5.17.0-next-20220324+ raspberrypi#399 Not tainted [ 15.460165] ------------------------------------------------------ [ 15.460166] kworker/0:3/155 is trying to acquire lock: [ 15.460170] ffff5b4d0eaf1308 (&scp->ipi_desc[i].lock){+.+.}-{4:4}, at: scp_ipi_lock+0x34/0x50 [mtk_scp_ipi] [ 15.504958] [] but task is already holding lock: [ 15.504960] ffff5b4d0e8f1918 (&mtk_subdev->channels_lock){+.+.}-{4:4}, at: mtk_register_device_work_function+0x50/0x1cc [mtk_rpmsg] [ 15.504978] [] which lock already depends on the new lock. [ 15.504980] [] the existing dependency chain (in reverse order) is: [ 15.504982] [] -> raspberrypi#1 (&mtk_subdev->channels_lock){+.+.}-{4:4}: [ 15.504990] lock_acquire+0x68/0x84 [ 15.504999] __mutex_lock+0xa4/0x3e0 [ 15.505007] mutex_lock_nested+0x40/0x70 [ 15.505012] mtk_rpmsg_ns_cb+0xe4/0x134 [mtk_rpmsg] [ 15.641684] mtk_rpmsg_ipi_handler+0x38/0x64 [mtk_rpmsg] [ 15.641693] scp_ipi_handler+0xbc/0x180 [mtk_scp] [ 15.663905] mt8192_scp_irq_handler+0x44/0xa4 [mtk_scp] [ 15.663915] scp_irq_handler+0x6c/0xa0 [mtk_scp] [ 15.685779] irq_thread_fn+0x34/0xa0 [ 15.685785] irq_thread+0x18c/0x240 [ 15.685789] kthread+0x104/0x110 [ 15.709579] ret_from_fork+0x10/0x20 [ 15.709586] [] -> #0 (&scp->ipi_desc[i].lock){+.+.}-{4:4}: [ 15.731271] __lock_acquire+0x11e4/0x1910 [ 15.740367] lock_acquire.part.0+0xd8/0x220 [ 15.749813] lock_acquire+0x68/0x84 [ 15.757861] __mutex_lock+0xa4/0x3e0 [ 15.766084] mutex_lock_nested+0x40/0x70 [ 15.775006] scp_ipi_lock+0x34/0x50 [mtk_scp_ipi] [ 15.785503] scp_ipi_register+0x40/0xa4 [mtk_scp_ipi] [ 15.796697] scp_register_ipi+0x1c/0x30 [mtk_scp] [ 15.807194] mtk_rpmsg_create_ept+0xa0/0x108 [mtk_rpmsg] [ 15.818912] rpmsg_create_ept+0x44/0x60 [ 15.827660] cros_ec_rpmsg_probe+0x15c/0x1f0 [ 15.837282] rpmsg_dev_probe+0x128/0x1d0 [ 15.846203] really_probe.part.0+0xa4/0x2a0 [ 15.855649] __driver_probe_device+0xa0/0x150 [ 15.865443] driver_probe_device+0x48/0x150 [ 15.877157] __device_attach_driver+0xc0/0x12c [ 15.889359] bus_for_each_drv+0x80/0xe0 [ 15.900330] __device_attach+0xe4/0x190 [ 15.911303] device_initial_probe+0x1c/0x2c [ 15.922969] bus_probe_device+0xa8/0xb0 [ 15.933927] device_add+0x3a8/0x8a0 [ 15.944193] device_register+0x28/0x40 [ 15.954970] rpmsg_register_device+0x5c/0xa0 [ 15.966782] mtk_register_device_work_function+0x148/0x1cc [mtk_rpmsg] [ 15.983146] process_one_work+0x294/0x664 [ 15.994458] worker_thread+0x7c/0x45c [ 16.005069] kthread+0x104/0x110 [ 16.014789] ret_from_fork+0x10/0x20 [ 16.025201] [] other info that might help us debug this: [ 16.047769] Possible unsafe locking scenario: [ 16.063942] CPU0 CPU1 [ 16.075166] ---- ---- [ 16.086376] lock(&mtk_subdev->channels_lock); [ 16.097592] lock(&scp->ipi_desc[i].lock); [ 16.113188] lock(&mtk_subdev->channels_lock); [ 16.129482] lock(&scp->ipi_desc[i].lock); [ 16.140020] [] *** DEADLOCK *** [ 16.158282] 4 locks held by kworker/0:3/155: [ 16.168978] #0: ffff5b4d00008748 ((wq_completion)events){+.+.}-{0:0}, at: process_one_work+0x1fc/0x664 [ 16.190017] raspberrypi#1: ffff80000953bdc8 ((work_completion)(&mtk_subdev->register_work)){+.+.}-{0:0}, at: process_one_work+0x1fc/0x664 [ 16.215269] raspberrypi#2: ffff5b4d0e8f1918 (&mtk_subdev->channels_lock){+.+.}-{4:4}, at: mtk_register_device_work_function+0x50/0x1cc [mtk_rpmsg] [ 16.242131] raspberrypi#3: ffff5b4d05964190 (&dev->mutex){....}-{4:4}, at: __device_attach+0x44/0x190 To solve this, simply unlock the channels_lock mutex before calling mtk_rpmsg_register_device() and relock it right after, as safety is still ensured by the locking mechanism that happens right after through SCP. Fixes: 7017996 ("rpmsg: add rpmsg support for mt8183 SCP.") Signed-off-by: AngeloGioacchino Del Regno <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Mathieu Poirier <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
herrnst
pushed a commit
to herrnst/linux-raspberrypi
that referenced
this pull request
Aug 21, 2022
[ Upstream commit 353d921 ] During execution of the worker that's used to register rpmsg devices we are safely locking the channels mutex but, when creating a new endpoint for such devices, we are registering a IPI on the SCP, which then makes the SCP to trigger an interrupt, lock its own mutex and in turn register more subdevices. This creates a circular locking dependency situation, as the mtk_rpmsg channels_lock will then depend on the SCP IPI lock. [ 15.447736] ====================================================== [ 15.460158] WARNING: possible circular locking dependency detected [ 15.460161] 5.17.0-next-20220324+ raspberrypi#399 Not tainted [ 15.460165] ------------------------------------------------------ [ 15.460166] kworker/0:3/155 is trying to acquire lock: [ 15.460170] ffff5b4d0eaf1308 (&scp->ipi_desc[i].lock){+.+.}-{4:4}, at: scp_ipi_lock+0x34/0x50 [mtk_scp_ipi] [ 15.504958] [] but task is already holding lock: [ 15.504960] ffff5b4d0e8f1918 (&mtk_subdev->channels_lock){+.+.}-{4:4}, at: mtk_register_device_work_function+0x50/0x1cc [mtk_rpmsg] [ 15.504978] [] which lock already depends on the new lock. [ 15.504980] [] the existing dependency chain (in reverse order) is: [ 15.504982] [] -> raspberrypi#1 (&mtk_subdev->channels_lock){+.+.}-{4:4}: [ 15.504990] lock_acquire+0x68/0x84 [ 15.504999] __mutex_lock+0xa4/0x3e0 [ 15.505007] mutex_lock_nested+0x40/0x70 [ 15.505012] mtk_rpmsg_ns_cb+0xe4/0x134 [mtk_rpmsg] [ 15.641684] mtk_rpmsg_ipi_handler+0x38/0x64 [mtk_rpmsg] [ 15.641693] scp_ipi_handler+0xbc/0x180 [mtk_scp] [ 15.663905] mt8192_scp_irq_handler+0x44/0xa4 [mtk_scp] [ 15.663915] scp_irq_handler+0x6c/0xa0 [mtk_scp] [ 15.685779] irq_thread_fn+0x34/0xa0 [ 15.685785] irq_thread+0x18c/0x240 [ 15.685789] kthread+0x104/0x110 [ 15.709579] ret_from_fork+0x10/0x20 [ 15.709586] [] -> #0 (&scp->ipi_desc[i].lock){+.+.}-{4:4}: [ 15.731271] __lock_acquire+0x11e4/0x1910 [ 15.740367] lock_acquire.part.0+0xd8/0x220 [ 15.749813] lock_acquire+0x68/0x84 [ 15.757861] __mutex_lock+0xa4/0x3e0 [ 15.766084] mutex_lock_nested+0x40/0x70 [ 15.775006] scp_ipi_lock+0x34/0x50 [mtk_scp_ipi] [ 15.785503] scp_ipi_register+0x40/0xa4 [mtk_scp_ipi] [ 15.796697] scp_register_ipi+0x1c/0x30 [mtk_scp] [ 15.807194] mtk_rpmsg_create_ept+0xa0/0x108 [mtk_rpmsg] [ 15.818912] rpmsg_create_ept+0x44/0x60 [ 15.827660] cros_ec_rpmsg_probe+0x15c/0x1f0 [ 15.837282] rpmsg_dev_probe+0x128/0x1d0 [ 15.846203] really_probe.part.0+0xa4/0x2a0 [ 15.855649] __driver_probe_device+0xa0/0x150 [ 15.865443] driver_probe_device+0x48/0x150 [ 15.877157] __device_attach_driver+0xc0/0x12c [ 15.889359] bus_for_each_drv+0x80/0xe0 [ 15.900330] __device_attach+0xe4/0x190 [ 15.911303] device_initial_probe+0x1c/0x2c [ 15.922969] bus_probe_device+0xa8/0xb0 [ 15.933927] device_add+0x3a8/0x8a0 [ 15.944193] device_register+0x28/0x40 [ 15.954970] rpmsg_register_device+0x5c/0xa0 [ 15.966782] mtk_register_device_work_function+0x148/0x1cc [mtk_rpmsg] [ 15.983146] process_one_work+0x294/0x664 [ 15.994458] worker_thread+0x7c/0x45c [ 16.005069] kthread+0x104/0x110 [ 16.014789] ret_from_fork+0x10/0x20 [ 16.025201] [] other info that might help us debug this: [ 16.047769] Possible unsafe locking scenario: [ 16.063942] CPU0 CPU1 [ 16.075166] ---- ---- [ 16.086376] lock(&mtk_subdev->channels_lock); [ 16.097592] lock(&scp->ipi_desc[i].lock); [ 16.113188] lock(&mtk_subdev->channels_lock); [ 16.129482] lock(&scp->ipi_desc[i].lock); [ 16.140020] [] *** DEADLOCK *** [ 16.158282] 4 locks held by kworker/0:3/155: [ 16.168978] #0: ffff5b4d00008748 ((wq_completion)events){+.+.}-{0:0}, at: process_one_work+0x1fc/0x664 [ 16.190017] raspberrypi#1: ffff80000953bdc8 ((work_completion)(&mtk_subdev->register_work)){+.+.}-{0:0}, at: process_one_work+0x1fc/0x664 [ 16.215269] raspberrypi#2: ffff5b4d0e8f1918 (&mtk_subdev->channels_lock){+.+.}-{4:4}, at: mtk_register_device_work_function+0x50/0x1cc [mtk_rpmsg] [ 16.242131] raspberrypi#3: ffff5b4d05964190 (&dev->mutex){....}-{4:4}, at: __device_attach+0x44/0x190 To solve this, simply unlock the channels_lock mutex before calling mtk_rpmsg_register_device() and relock it right after, as safety is still ensured by the locking mechanism that happens right after through SCP. Fixes: 7017996 ("rpmsg: add rpmsg support for mt8183 SCP.") Signed-off-by: AngeloGioacchino Del Regno <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Mathieu Poirier <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
popcornmix
pushed a commit
that referenced
this pull request
Aug 23, 2022
[ Upstream commit 353d921 ] During execution of the worker that's used to register rpmsg devices we are safely locking the channels mutex but, when creating a new endpoint for such devices, we are registering a IPI on the SCP, which then makes the SCP to trigger an interrupt, lock its own mutex and in turn register more subdevices. This creates a circular locking dependency situation, as the mtk_rpmsg channels_lock will then depend on the SCP IPI lock. [ 15.447736] ====================================================== [ 15.460158] WARNING: possible circular locking dependency detected [ 15.460161] 5.17.0-next-20220324+ #399 Not tainted [ 15.460165] ------------------------------------------------------ [ 15.460166] kworker/0:3/155 is trying to acquire lock: [ 15.460170] ffff5b4d0eaf1308 (&scp->ipi_desc[i].lock){+.+.}-{4:4}, at: scp_ipi_lock+0x34/0x50 [mtk_scp_ipi] [ 15.504958] [] but task is already holding lock: [ 15.504960] ffff5b4d0e8f1918 (&mtk_subdev->channels_lock){+.+.}-{4:4}, at: mtk_register_device_work_function+0x50/0x1cc [mtk_rpmsg] [ 15.504978] [] which lock already depends on the new lock. [ 15.504980] [] the existing dependency chain (in reverse order) is: [ 15.504982] [] -> #1 (&mtk_subdev->channels_lock){+.+.}-{4:4}: [ 15.504990] lock_acquire+0x68/0x84 [ 15.504999] __mutex_lock+0xa4/0x3e0 [ 15.505007] mutex_lock_nested+0x40/0x70 [ 15.505012] mtk_rpmsg_ns_cb+0xe4/0x134 [mtk_rpmsg] [ 15.641684] mtk_rpmsg_ipi_handler+0x38/0x64 [mtk_rpmsg] [ 15.641693] scp_ipi_handler+0xbc/0x180 [mtk_scp] [ 15.663905] mt8192_scp_irq_handler+0x44/0xa4 [mtk_scp] [ 15.663915] scp_irq_handler+0x6c/0xa0 [mtk_scp] [ 15.685779] irq_thread_fn+0x34/0xa0 [ 15.685785] irq_thread+0x18c/0x240 [ 15.685789] kthread+0x104/0x110 [ 15.709579] ret_from_fork+0x10/0x20 [ 15.709586] [] -> #0 (&scp->ipi_desc[i].lock){+.+.}-{4:4}: [ 15.731271] __lock_acquire+0x11e4/0x1910 [ 15.740367] lock_acquire.part.0+0xd8/0x220 [ 15.749813] lock_acquire+0x68/0x84 [ 15.757861] __mutex_lock+0xa4/0x3e0 [ 15.766084] mutex_lock_nested+0x40/0x70 [ 15.775006] scp_ipi_lock+0x34/0x50 [mtk_scp_ipi] [ 15.785503] scp_ipi_register+0x40/0xa4 [mtk_scp_ipi] [ 15.796697] scp_register_ipi+0x1c/0x30 [mtk_scp] [ 15.807194] mtk_rpmsg_create_ept+0xa0/0x108 [mtk_rpmsg] [ 15.818912] rpmsg_create_ept+0x44/0x60 [ 15.827660] cros_ec_rpmsg_probe+0x15c/0x1f0 [ 15.837282] rpmsg_dev_probe+0x128/0x1d0 [ 15.846203] really_probe.part.0+0xa4/0x2a0 [ 15.855649] __driver_probe_device+0xa0/0x150 [ 15.865443] driver_probe_device+0x48/0x150 [ 15.877157] __device_attach_driver+0xc0/0x12c [ 15.889359] bus_for_each_drv+0x80/0xe0 [ 15.900330] __device_attach+0xe4/0x190 [ 15.911303] device_initial_probe+0x1c/0x2c [ 15.922969] bus_probe_device+0xa8/0xb0 [ 15.933927] device_add+0x3a8/0x8a0 [ 15.944193] device_register+0x28/0x40 [ 15.954970] rpmsg_register_device+0x5c/0xa0 [ 15.966782] mtk_register_device_work_function+0x148/0x1cc [mtk_rpmsg] [ 15.983146] process_one_work+0x294/0x664 [ 15.994458] worker_thread+0x7c/0x45c [ 16.005069] kthread+0x104/0x110 [ 16.014789] ret_from_fork+0x10/0x20 [ 16.025201] [] other info that might help us debug this: [ 16.047769] Possible unsafe locking scenario: [ 16.063942] CPU0 CPU1 [ 16.075166] ---- ---- [ 16.086376] lock(&mtk_subdev->channels_lock); [ 16.097592] lock(&scp->ipi_desc[i].lock); [ 16.113188] lock(&mtk_subdev->channels_lock); [ 16.129482] lock(&scp->ipi_desc[i].lock); [ 16.140020] [] *** DEADLOCK *** [ 16.158282] 4 locks held by kworker/0:3/155: [ 16.168978] #0: ffff5b4d00008748 ((wq_completion)events){+.+.}-{0:0}, at: process_one_work+0x1fc/0x664 [ 16.190017] #1: ffff80000953bdc8 ((work_completion)(&mtk_subdev->register_work)){+.+.}-{0:0}, at: process_one_work+0x1fc/0x664 [ 16.215269] #2: ffff5b4d0e8f1918 (&mtk_subdev->channels_lock){+.+.}-{4:4}, at: mtk_register_device_work_function+0x50/0x1cc [mtk_rpmsg] [ 16.242131] #3: ffff5b4d05964190 (&dev->mutex){....}-{4:4}, at: __device_attach+0x44/0x190 To solve this, simply unlock the channels_lock mutex before calling mtk_rpmsg_register_device() and relock it right after, as safety is still ensured by the locking mechanism that happens right after through SCP. Fixes: 7017996 ("rpmsg: add rpmsg support for mt8183 SCP.") Signed-off-by: AngeloGioacchino Del Regno <[email protected]> Link: https://lore.kernel.org/r/[email protected] Signed-off-by: Mathieu Poirier <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
scratch it, pull request is for 3.9 not 3.6